

©KRAKEN Consortium 1

This project has received funding from the European Union’s Horizon 2020 (H2020)

research and innovation programme under the Grant Agreement no 871473

BROKERAGE AND MARKET PLATFORM

FOR PERSONAL DATA

D5.5 KRAKEN Marketplace First Release

www.krakenh2020.eu

D5.5 KRAKEN Marketplace First Release

Grant agreement 871473

Work Package Leader Lynkeus

Author(s) Rob Holmes (TX)

Contributors Donato Pelegrino (TX), Davide Zaccagnini (Lynkeus), Tilen Marc (XLAB),

Javier Presa Cordero (Atos)

Reviewer(s) Sebastian Ramacher (AIT), Davide Zaccagnini (Lynkeus)

Version Final

Due Date 31/08/2021

Submission Date 28/09/2021

Dissemination Level Public

Copyright

© KRAKEN consortium. This document cannot be copied or reproduced, in whole or in part for any

purpose without express attribution to the KRAKEN project.

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 3

Release History

Version Date Description Released by

v0.1 18/06/2021 Initial version (ToC and initial

marketplace text)

Rob Holmes

v0.2 24/06/2021 Section MPC node Tilen Marc

v0.3 01/07/2021 Atos updates to Marketplace SSI Agent

section

Javier Presa Cordero

v0.4 12/07/2021 TEX integration of all partner updates

and writing of intro, exec summary and

conclusion read for review

Rob Holmes

v0.5 22/07/2021 Review from LYN Davide Zaccagnini

v0.6 22/07/2021 Review from AIT Sebastian Ramacher

v0.7 30/07/2021 Incorporation of feedback from

reviewers. Final version ready for quality

manager review

Rob Holmes

v0.8 23/09/2021 Final version Rob Holmes

v1.0 28/09/2021 Submitted version Atos

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 4

Table of Contents

List of Tables .. 6

List of Figures ... 7

List of Acronyms .. 8

Executive Summary ... 9

1 Introduction ... 10

1.1 Purpose of the document .. 10

1.2 Structure of the document .. 10

1.3 Glossary adopted in this document ... 11

2 Initial Marketplace Release Overview.. 12

3 MARKETPLACE API ... 15

3.1 Description ... 15

3.2 Interfaces ... 15

3.3 Deployment.. 18

3.4 Source Code ... 18

3.5 Baseline Technologies and Tools ... 18

4 MARKETPLACE CATALOGUE DATABASE ... 19

4.1 Description ... 19

4.2 Interfaces ... 19

4.3 Deployment.. 22

4.4 Source Code ... 22

4.5 Baseline Technologies and Tools ... 22

5 MARKETPLACE FRONTEND ... 23

5.1 Description ... 23

5.2 Interfaces ... 23

5.3 Deployment.. 24

5.4 Source Code ... 24

5.5 Baseline Technologies and Tools ... 24

6 MARKETPLACE SMART CONTRACT .. 25

6.1 Description ... 25

6.2 Interfaces ... 25

6.3 Deployment.. 30

6.4 Source Code ... 30

6.5 Baseline Technologies and Tools ... 30

7 MARKETPLACE XDAI WATCHER ... 31

7.1 Description ... 31

7.2 Interfaces ... 31

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 5

7.3 Deployment.. 31

7.4 Source Code ... 31

7.5 Baseline Technologies and Tools ... 31

8 CONSORTIUM BLOCKCHAIN NODE .. 32

8.1 Description ... 32

8.2 Interfaces ... 32

8.3 Deployment.. 34

8.4 Source Code ... 35

8.5 Baseline Technologies and Tools ... 36

9 MPC NODE.. 37

9.1 Description ... 37

9.2 Interfaces ... 37

9.3 Deployment.. 37

9.4 Source Code ... 37

9.5 Baseline Technologies and Tools ... 37

10 MARKETPLACE SSI AGENT .. 38

10.1 Description ... 38

10.2 Interfaces ... 38

10.3 Deployment.. 38

10.4 Source Code ... 39

10.5 Baseline Technologies and Tools ... 39

11 Conclusion .. 40

12 References .. 41

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 6

List of Tables

Table 1: Glossary ... 11
Table 2: CA Client API Tasks .. 33
Table 3: Peer API Tasks.. 34

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 7

List of Figures

Figure 1: How batch data transfer works in KRAKEN .. 13
Figure 2: KRAKEN marketplace components diagram .. 14
Figure 3: Marketplace API interfaces .. 17
Figure 4: Automated code deployment ... 18
Figure 5: Marketplace Smart Contract Interfaces ... 29
Figure 6: Individual network nodes ... 35
Figure 7: Ledger uSelf Broker deployment .. 39

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 8

List of Acronyms

Acronym Description

API Application Programming Interface

REST Representational State Transfer

SSI Self-Sovereign Identity

SMPC Secure Multi Party Computation

ID Identifier

WASM Web Assembly

AWS Amazon Web Services

CI/CD Continuous Integration / Continuous Deployment

DB Database

GUI Graphical User Interface

ERC20 Ethereum Request for Comments 20

DID Decentralised ID

TPS Transactions Per Second

VM Virtual Machine

CA Certificate Authority

TLS Transport Layer Security

HLF Hyperledger Fabric

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 9

Executive Summary

This document describes the current software of the initial KRAKEN marketplace implementation,

covering all modules, programs and tools used for the marketplace first release. It is the first

deliverable of Task 5.4 - Backend/Frontend Development within Work Package 5 - Reference platform

implementation, pilot’s integration and validation.

The general objective of Work Package 5 is to design and develop a fully functional pilot marketplace

for the KRAKEN general infrastructure for biomedical and wellbeing data and for educational data. This

initial marketplace release consists of an integrated set of infrastructures that together facilitate

encrypted batch data transfer to eligible data consumers through directory sharing. Batch data can be

defined as a static record or collection of records, as opposed to real-time data streams which provide

a sequence of data points in time.

This Deliverable 5.5 provides a brief description of each component of the initial Marketplace release,

describing the interfaces, deployment, source codes and tool usage.

A short description of the components described in this document is provided below:

• Marketplace API (Section 3)

o Handles any requests sent by the Marketplace Frontend, the Marketplace xDai

Watcher and the Ledger uSelf Broker of the SSI Agent.

o Sends requests to the SMPC node, the Ledger uSelf Broker of the SSI Agent, the

Marketplace Catalogue Database, and the marketplace Consortium Blockchain Node.

• Marketplace Catalogue Database (Section 4)

o Persistently stores metadata associated with Data Products’ and marketplace users.

o Providing the users with the ability to browse and filter Data Products.

• Marketplace Frontend (Section 5)

o Software component within the marketplace system that is equipped with a graphical

User Interface (GUI) allowing users to perform all marketplace operations.

• Marketplace Smart Contract (Section 6)

o Responsible for the publication and purchase of Data Products on the xDai blockchain.

• Marketplace xDai Watcher (Section 7)

o An intermediary between the Marketplace Smart Contract and Marketplace API,

updating the API about any new Data Product status on the xDai blockchain.

• Consortium Blockchain Node (Section 8)

o Stores associated Data Product policies and eligible Data Product transactions on the

ledger and controls which users have legitimate, compliant access to which Data

Products.

• MPC Node (Section 9)

o Used to securely evaluate various analytics on datasets in a privacy-preserving fashion

as well as a mechanism for the key distribution process for access to batch Data

Products.

• Marketplace SSI Agent Ledger uSelf Broker (Section 10)

o Facilitates the integration between the marketplace and SSI, easing the complex

interactions with the SSI solution for user registration and authentication such as

exchanging DIDs, issuing of verifiable credentials and the presentation of proofs.

Please note that this deliverable represents the status of the marketplace software components for

the first release. At the time of this release the project is in August 2021 (month 21) and further

development will continue beyond this initial release with the final software components released in

July 2022 (month 32). Any changes to the marketplace software will be reflected in the report

accompanying Deliverable 5.6 - KRAKEN Marketplace Final Release in July 2022.

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 10

1 Introduction

1.1 Purpose of the document

The KRAKEN marketplace consists of an integrated set of infrastructures that together have been

designed to facilitate the secure GDPR compliant exchange of biomedical and educational data. The

aim of this deliverable 5.5 (D5.5) document is to provide a brief description of each of the Marketplace

software components that form part of the first release, including their purpose, interfaces, how they

are deployed, where to find the source code and which baseline technologies or tools have been used

to build them.

1.2 Structure of the document

This report commences with a brief overview of the initial prototype release as part of D5.5 (Section

2). It has then been split into dedicated sections for each of the modules, programs and tools

developed and to be deployed as part of the Marketplace first release. These include the marketplace

API (Section 3), marketplace catalogue database (Section 4), marketplace front end (Section 5),

marketplace smart contract (Section 6) and xDai watcher (Section 7) developed by TEX, the consortium

blockchain node (Section 8) from Lynkeus, the MPC node (Section 9) from XLAB and finally the SSI

agent (Section 10) from Atos. Each section begins with a brief description of the component, followed

by sub-sections related to interfaces, source codes, deployment instructions and baseline technologies

and tools.

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 11

1.3 Glossary adopted in this document

Term Definition

Blockchain Network provided with a decentralized consensus

algorithm and an immutable ledger.

Wallet A data store for the DIDs and related information (including

private keys and more).

Fork Division of the development flow in two different branches

Smart Contract Computer program executed by a blockchain.

xDai Public blockchain

Catalogue Collection of Data Products metadata

Dataset Key Cryptographic key used to encrypt a Data Product Dataset

Key Shares Shares generated from the Dataset key for the SMPC

computation

Key Computation SMPC computation of the Dataset key

Web Assembly binary-instruction format for virtual machines

DID-Connection SSI connection between two agents provided with two

unique DIDs

Metadata Descriptive set of information related to a Data Product

(Description, tags, image, etc...)

Verifiable Credential SSI Certificate that can be verified by SSI agents

Metamask wallet Browser extension to manage crypto assets

DataCoin ERC20 token adopted by the Streamr network

Batch Group of data points collected within a given time period

Streams Data that is continuously generated by different sources

Table 1: Glossary

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 12

2 Initial Marketplace Release Overview

The data marketplace is one of the key pillars of the KRAKEN project for enabling the sharing and

trading (monetisation) of personal data. This initial marketplace release is the result of intensive design

and development efforts to integrate multiple technology components at varying levels of

technological maturity. The high-level technological components that have been integrated within this

release are:

1) A forked and adapted instance of the Streamr marketplace [1];

2) The Lynkeus MHMD [2] Hyperledger Fabric Blockchain;

3) The Self-Sovereign Identity (SSI) Agent uSelf Broker; and

4) The SMPC Network.

For a full description of the initial marketplace integrated architecture and an explanation of the inner

workings of the platform please refer to D5.3 - Initial KRAKEN marketplace integrated architecture

document. However, briefly, the high-level integrated technological components described above are

mapped across to the three areas, or layers, of the marketplace architecture introduced in Section 2

of D5.3 as follows:

1) Permission management layer: Lynkeus MHMD Hyperledger Fabric Blockchain and SSI Agent

2) Data protection layer: SMPC Network supported by the marketplace for standard encryption

3) Data transaction management layer: Forked and adapted instance of Streamr marketplace

It is planned that the final KRAKEN marketplace will facilitate three types of data access modalities:

1) Batch data transfer through directory sharing;

2) Transfer of encrypted streaming data; and

3) Secure Multiparty Computation.

Within this initial marketplace release the first data access modality for encrypted batch data transfer

through directory sharing has been realised for individual users of the marketplace and organizations.

This modality was first described in D2.6 - Marketplace Technical Specification, Section 2.3.2. The

transfer of encrypted streaming data and Secure Multiparty Computation (analytics) modalities will be

included at a later release.

For ease of reference Figure 1 below provides an overview of how the batch data transfer through

directory sharing modality works. In this data access modality data consumers are given temporary

access to process personal data in line with legal parameters (GDPR and national regulations) and

individual policies such as pre-defined purposes of use that have been pre-approved by the data

providers. All legal parameters and policies are managed by the Lynkeus Consortium permissioned

blockchain. For paid Data Products, temporary access is also dependent upon successful payment using

the ERC-20 DATA token [3], which is managed by the marketplace smart contract on xDai public

blockchain [4]. For a full explanation of the functioning of this modality please refer to D5.3.

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 13

Figure 1: How batch data transfer works in KRAKEN

For this first release, the SMPC Network is used as a mechanism for key distribution in the batch data

transfer through directory sharing modality. In a future release the SMPC network will also be used for

the third data access modality (Secure Multiparty Computation), which will allow privacy-preserving

computation / analytics to be performed on local data assets. Again, both applications of SMPC are

fully described in D5.3.

It should also be noted that whilst an initial integration with the SSI has been realised through the

integration with the SSI Agent’s uSelf broker, in order to finalise the processes of registration and login

to the marketplace the present proof functionality and the possibility to specify a credential ID must

be integrated. It is expected that this shall be completed in advance of the first round of user

evaluations.

A full list of the lower-level components developed and deployed as part of the first marketplace

release, and described in the following sections of this document, are listed below. Some of the

individual modules will be deployed as a single instance hosted by a single KRAKEN partner

organization, whilst other modules will be deployed as multiple instances hosted by multiple KRAKEN

partner organisations. This hosting is also indicated below.

• TEX

o Marketplace Smart Contract

o Marketplace API

o Marketplace xDai watcher

o Marketplace frontend

o Marketplace Catalogue Database

o Consortium Blockchain Node

o SSI Agent

o SSI Agent uSelf Broker

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 14

• Lynkeus

o Consortium Blockchain Node

• XLab

o Three instances of the SMPC Node

Each of the integrated technological components identified in the above list are also shown visually in

Figure 2 below.

Figure 2: KRAKEN marketplace components diagram

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 15

3 MARKETPLACE API

This section describes the Marketplace API component. This component is used by the marketplace

system to receive any type of client request related to the publication of Data Products and the

purchase of access to Data Products.

3.1 Description

The Marketplace API is a REST API that handles any request sent by the Marketplace Frontend, the

Marketplace xDai Watcher, the KRAKEN mobile app, and the Ledger uSelf Broker of the SSI Agent.

These requests enable the following set of operations: Data Product catalogue download and filtering,

Data Product publication and modification, Data Product publication on xDai, Data Product purchase,

buyer eligibility check, buyer payment and SMPC Dataset key request.

This component also sends requests to the SMPC node, the Ledger uSelf Broker of the SSI Agent, the

Marketplace Catalogue Database, and the Consortium Blockchain node. These requests enable the

following set of operations: Data Product metadata storage, Data Product publication on the

Consortium Blockchain, buyer’s eligibility check, Dataset key shares storage, user registration and

authentication.

3.2 Interfaces

A list of interfaces for the Marketplace API are provided below:

● GET/did-connection

Download did-connection invitation information to perform a did-connection with the

marketplace SSI agent.

● GET/products

Download the list of public Data Products available on the marketplace.

● POST/products

Upload a new Data Product on the marketplace.

● GET/products/:id

Download metadata of a Data Product with a specific ID.

● PUT/products/:id

Modify metadata of a Data Product with a specific ID.

● GET/products/:id/streams

Get list of Data Streams of a Data Product with a specific ID.

● POST/products/:id/keyRequest

Request the key computation for a Data Product with a specific ID.

● POST/products/:id/deployFree

Publish a Data Product with a specific ID on the marketplace for free.

● POST/products/:id/setDeploying

Inform the marketplace that a Data Product with a specific ID is being published on the

payment blockchain.

● POST/products/:id/setDeployed

Inform the marketplace that a Data Product with a specific ID has been published on the

payment blockchain.

● POST/products/:id/stateEligibleBuyer

Request Consortium blockchain eligibility to purchase access to a Data Product with a specific

ID for the user sending the request.

● GET/subscriptions

Download list of subscriptions of the user sending the request.

● POST/subscriptions

Add a new subscription to a specific Data Product for the user sending the request.

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 16

● GET/products/:id/permissions/me

Download list of permissions of the user that is sending the request.

● GET/users/me/products

Download list of data products owned by the user that is sending the transaction.

● GET/split.wasm

Download the web assembly code needed to perform the cryptographic operations for the

processing of encryption keys and analytics datasets on the user frontend.

Figure 3 below shows the above listed interfaces in a visual form, including the components in the

marketplace system that use them.

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 17

Figure 3: Marketplace API interfaces

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 18

3.3 Deployment

Figure 4: Automated code deployment

Automated code deployment tools are utilized in the deployment of the project code base. As new

versions of the component code are committed to a preconfigured deployment branch on GitHub [5]

they are compiled on Travis CI [6] and upon successful compilation they are deployed to a cloud

infrastructure hosted by amazon web services [7].

The code compilation, deployment and cloud infrastructures environment settings are managed with

a specific configuration file appended to the code base. Capacity provisioning and health monitoring

of cloud infrastructure is handled by AWS Elastic Beanstalk services [8].

Travis.yml file guides Travis CI on how the code should be compiled and deployed, e.g. which

commands need to be executed and if there are any tests or code linting, how they should be run and

where should they be deployed given that previous stages of code compilation are successful.

3.4 Source Code

The code is available on a private repository on GitHub

3.5 Baseline Technologies and Tools

The Marketplace API is a REST API developed using JavaScript. The libraries the code depends on are

express, fabric-network, ws for the web socket communication with the SMPC network, mongoose for

the database communication and the Lynkeus libraries for the communication with the Consortium

Blockchain.

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 19

4 MARKETPLACE CATALOGUE DATABASE

This section describes the Marketplace Catalogue Database. This component of the marketplace

system is used by the Marketplace API to persistently store data products descriptions in the form of

metadata associated with every Data Product and data on users’ credentials, specifically stored on the

Data Products Catalogue.

4.1 Description

The Marketplace Catalogue Database is a MongoDB [9] database instance that is used by the

Marketplace API to persistently store all information related to:

• A Data Product’s associated metadata;

• The information about registered users’ verifiable credentials; and

• A log of the DID connections established with the users.

The stored metadata serves the purpose of providing users with the ability to browse and filter Data

Products on the marketplace catalogue and describe and define specific details about the Data Product

when publishing data descriptions.

4.2 Interfaces

A list of Data Models is provided below:

DATA PRODUCT

• id: String

Hexadecimal string of 64 characters representing the product ID. This ID represents the same

data product on the xDai blockchain, on the backend and on the Lynkeus blockchain. It’s

generated for the first time on the Lynkeus blockchain.

• ownerID: String

Registration Verifiable Credential of the owner of the product

• name: string

User-provided product name

• description: string

User-provided product description

• shortDescription: string

User-provided product short description

• educationTags

Set of tags to categorise a product belonging to the education pilot

o university: string

Data product university name

o studyProgram: string

Data product study program name

o course: string

Data product course name

• heathTags: [String]

List of tags to categorise a data product belonging to the health pilot. These tags are selected

between the ones available in the MeSH ontology. The integration with the ontology is

specified in D3.3

• fileStructureAndFormat

set of parameters describing the dataset

o filename: String

Name of the dataset file

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 20

o format: String

Format of the dataset file

o filesize: Number

Size of the dataset file

• owner: String

Data Product owner name/pseudonym

• imageUrl: String

URL of the Data product image

• state: String

Deployment state of the Data product. Available options: undeployed, deploying, deployed

• created: Date

Creartion date of the Data product

• updated: Date

Ltest update date of the Data product

• minimumSubscriptionInSeconds: Number

Minimum amount of seconds a subscription can be purchased or extended

• ownerAddress: Address

xDai address authorised to apply changes to the product

• beneficiaryAddress: Address

Destination address for subscription tokens

• pricePerSecond: NumberString

Data product price per second

• priceCurrency: ContractCurrency

User-selected data product price currency. At the moment the only available one is DATA

COIN

• timeUnit: TimeUnit

Data product time unit chosen by the user between: hour, day, week, month

• price: NumberString

Data product price per time unit

• isFree: boolean

Data product payment requirement binary indicator

• type: ProductType

Data product type chosen by the user between: Batch, Analytics and Real time stream. At the

moment only the batch data product can be selected

• sector: string

Market sector of the data product chosen between health and education

• anonymizeDataset: boolean

Data produt anonymisation binary indicator

• requiresWhitelist: boolean

Binary parameter indicating if a Data product is provided with a whitelist

• policies

Access control parameter selected by the user

o personalDataFromOtherPeople: Boolean

Binary parameter corresponding to the answer the user gave to the question: “Does

the data you're publishing contain personal data from persons other than yourself?”

o consentFromIncludedSubjects: Boolean

Binary parameter corresponding to the answer the user gave to the question: “Has

informed, explicit and free consent been obtained from all data subjects

whose data is included?”

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 21

o purposes: [String]

List of purposes specified by subjects other than the data product publisher for

sharing their data as stated in their consent.

o dataAcces: [String]

List of users categories that can access the data.

o dataAccessCountries: [String]

List of countries where the data product can be purchased

• keyShares: [[Number]]

Shares of the dataset encryption key encrypted for every for the SMPC nodes.

• datasetUrl: string

URL for the download of the encrypted dataset

• streams

List of streams IDs

ACCESS ELIGIBILITY

• userID: String

Registration Verifiable Credential of the user requesting access to the data product.

• transactionID: String

ID of the blockchain transaction stating the eligibility of the user to buy the data product

• product: ProductSchema

Data product for which the user requested access to

SUBSCRIPTION

• userID: String

Registration Verifiable Credential of the user subscribing to the data product.

• transactionID: String

ID of the blockchain transaction stating the eligibility of the user to buy the data product

• endsAt: Date

Expiry date of the subscription

• dateCreated: Date

Creation date of the subscription

• lastUpdated: Date

Latest extension (if any) of the subscription

• product: ProductSchema

Purchased data product

USER CREDENTIAL

• state: Number

Deployment state of the User’s verifiable credential.

• registrationInfo

Verifiable credential content

o ID: String

Unique ID of the credential

o firstName: String

User’s first name

o secondName: String

User’s second name

o email: String

User’s email

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 22

o residenceCountry: String

Country of residence

• didConnection

o state: Number

o id: String

o invitationID

4.3 Deployment

For the first release, the MongoDB instance exploited in the KRAKEN marketplace will be a cluster

deployed and provided by MongoDB’s Atlas cloud clusters system.

4.4 Source Code

The code including schema definitions and the functions used to update them are included in the

Marketplace API repository.

4.5 Baseline Technologies and Tools

The database itself is a MongoDB instance. The library used to integrate the database with the

Marketplace API is mongoose [10].

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 23

5 MARKETPLACE FRONTEND

This section describes the Marketplace frontend. This component of the marketplace system is the

tool that is used by the users to interact with the KRAKEN marketplace and perform all available

operations.

5.1 Description

The Marketplace frontend is the software component within the marketplace system that is equipped

with a Graphical User Interface (GUI) to allow users of the marketplace to perform the following

operations: Registration and login on the platform, Data Product browsing, Data Product publication,

Data Product purchase, Data Product dataset download (after purchase).

The frontend is integrated with an SSI wallet which enables the operations of SSI Verifiable Credentials

issuing and presentation, which is used during the user registration, login and demonstration of a

user’s institutional affiliation in the marketplace. The frontend is integrated also with a Metamask

wallet [11] for the operations of publishing and crypto payment to access Data Products within the

marketplace, which is facilitated by a solidity smart contract [12] published on the xDai blockchain.

This component also sends requests to the Marketplace API and the Marketplace Smart Contract for

any kind of operation related to Data Products publication, purchase and browsing.

5.2 Interfaces

A list of interfaces for the Marketplace frontend are provided below:

● Marketplace home page

Browse Data Products that are listed based on the search criteria and the market sector.

● Sign In page

Sign in on the marketplace using the SSI wallet app.

● Signup page

Signup on the marketplace using the SSI wallet app.

● Connect wallet page

Connect the metamask wallet to the platform to perform payment and publication on the

marketplace smart contract.

● Data Product page

Show all metadata about a specific Data Product and the policies set by the Data Provider,

function to buy the data product and consume it.

● User products page

Browse user’s Data Products added to the platform.

● Edit product page

Edit a Data Product’s metadata, policies, price, publication.

● Subscription’s page

List user subscriptions.

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 24

5.3 Deployment

The deployment of this component follows the same process as the one described for the Marketplace

API. Please refer to Section 3.3 for further details.

In addition to the configuration files specified in Section 3.3, this repository includes also an

.ebextensions file that manages the deployment environment specific settings and configurations, e.g.

number of file handlers on linux operating system.

5.4 Source Code

The code is available on a private repository on GitHub.

5.5 Baseline Technologies and Tools

The Marketplace frontend is a fork of the Streamr core-frontend repository publicly available on

GitHub:

https://github.com/streamr-dev/core-frontend

The software is written in JavaScript using the React framework [13]. The relevant libraries already

present on the streamr-core-frontend repository and added for the purpose of KRAKEN are web3, js-

nacl and the web assembly library to perform user operations for SMPC.

https://github.com/streamr-dev/core-frontend

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 25

6 MARKETPLACE SMART CONTRACT

This section describes the Marketplace Smart Contract. This component is used by the marketplace

system to perform the publication of a Data Product on the xDai blockchain. It also allows users of the

marketplace that are eligible to access a Data Product based on the data provider’s predefined policies

to make payments with an ERC20 token before accessing a data set.

6.1 Description

The Marketplace Smart Contract is the component responsible for the publication and purchase of

Data Products on the xDai blockchain. The Data Product publication and purchase requests sent to this

component come only from the Marketplace Frontend. This component is interfaced with the

DataCoin ERC20 smart contract deployed on xDai, allowing users of the marketplace to exploit

Streamr’s DataCoin token for monetary transactions between data providers and data consumers

within the marketplace.

6.2 Interfaces

A list of interfaces is provided below:

● getProduct(bytes32 id)

Fetch the info of a product with a a specific id.

● createProduct(bytes32 id, string memory name, address beneficiary, uint pricePerSecond,

Currency currency, uint minimumSubscriptionSeconds)

Creates a new product on the smart contract specifying all the parameters.

● createProductWithWhitelist(bytes32 id, string memory name, address beneficiary, uint

pricePerSecond, Currency currency, uint minimumSubscriptionSeconds)

Creates a new product on the smart contract specifying all the parameters and enables it to

be whitelisted.

● deleteProduct(bytes32 productId)

Undeploys a product with a specific id.

● redeployProduct(bytes32 productId)

Deploys an existing undeployed product with a specific id.

● updateProduct(bytes32 productId, string memory name, address beneficiary, uint

pricePerSecond, Currency currency, uint minimumSubscriptionSeconds, bool redeploy)

Updates the product info.

● offerProductOwnership(bytes32 productId, address newOwnerCandidate)

Offers the product ownership to another address.

● claimProductOwnership(bytes32 productId)

Claims the product ownership if the ownership was previously offered by the previous

owner.

● setRequiresWhitelist(bytes32 productId, bool _requiresWhitelist)

Sets up a product to require whitelisting or not.

● whitelistApprove(bytes32 productId, address subscriber)

Approve an address to be able to purchase a product.

● whitelistReject(bytes32 productId, address subscriber)

Prevent an address to be able to purchase a product.

● whitelistRequest(bytes32 productId)

Request to be whitelisted for a product with specific id.

● getWhitelistState(bytes32 productId, address subscriber)

Fetch the state of the whitelist on a certain address.

● getSubscription(bytes32 productId, address subscriber)

Fetch the subscription info of an address and a product.

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 26

● getSubscriptionTo(bytes32 productId)

Fetch the subscription info of the transaction sender address and a product.

● hasValidSubscription(bytes32 productId, address subscriber)

Checks if the specified address has a valid subscription on the specified product.

● grantSubscription(bytes32 productId, uint subscriptionSeconds, address recipient)

Give free access to a data product to a specific address. This function can only be called by

the product owner.

● buyFor(bytes32 productId, uint subscriptionSeconds, address recipient)

Buy the product for a specific address.

● buy(bytes32 productId, uint subscriptionSeconds)

Buy the product for the transaction sender address.

● updateExchangeRates(uint timestamp, uint dataUsd)

Update the exchange rates of the token associated with the smart contract.

● getPriceInData(uint subscriptionSeconds, uint price, Currency unit)

Get the current price of a product in the form of the token associated with the smart

contract.

● halt()

Prevent the execution of any function that could provoke modification to the internal state

of the smart contract. This function can only be called by the smart contract owner.

● resume()

Revert the actions of “halt()”

● reInitialize(address datacoinAddress, address currencyUpdateAgentAddress, address

prev_marketplace_address)

Override the current addresses of the token associated with the smart contract, the currency

updater address and the previous marketplace address (if it exists).

● setTxFee(uint256 newTxFee)

Sets a transactions fee that is sent to the smart contract owner on every paid purchase on

the smart contract.

A list of events is provided below:

● ProductCreated(address indexed owner, bytes32 indexed id, string name, address

beneficiary, uint pricePerSecond, Currency currency, uint minimumSubscriptionSeconds)

Notifies about the creation of a new product.

● ProductUpdated(address indexed owner, bytes32 indexed id, string name, address

beneficiary, uint pricePerSecond, Currency currency, uint minimumSubscriptionSeconds)

Notifies about the update of a product providing all the info.

● ProductDeleted(address indexed owner, bytes32 indexed id, string name, address

beneficiary, uint pricePerSecond, Currency currency, uint minimumSubscriptionSeconds)

Notifies about the deletion of a product providing all the info.

● ProductImported(address indexed owner, bytes32 indexed id, string name, address

beneficiary, uint pricePerSecond, Currency currency, uint minimumSubscriptionSeconds)

In the eventuality of the presence of a version 1 smart contract, it notifies about the import

of a product providing all the info.

● ProductRedeployed(address indexed owner, bytes32 indexed id, string name, address

beneficiary, uint pricePerSecond, Currency currency, uint minimumSubscriptionSeconds)

Notifies about the redeployment of a product providing all the info.

● ProductOwnershipOffered(address indexed owner, bytes32 indexed id, address indexed to)

Notifies about the product’s ownership offer to a new owner providing the info about

current owner, product id and potential new owner.

● ProductOwnershipChanged(address indexed newOwner, bytes32 indexed id, address

indexed oldOwner)

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 27

Notifies about the product’s ownership change to a new owner providing the info about new

owner, product id and old owner.

● Subscribed (bytes32 indexed productId, address indexed subscriber, uint endTimestamp)

Notifies about a new subscription or an extension of an existing subscription providing the

product id, the subscriber address and the end of the subscription.

● NewSubscription(bytes32 indexed productId, address indexed subscriber, uint

endTimestamp)

Notifies about a new subscription.

● SubscriptionExtended(bytes32 indexed productId, address indexed subscriber, uint

endTimestamp)

Notifies about the extension of an existing, not expired subscription.

● SubscriptionImported(bytes32 indexed productId, address indexed subscriber, uint

endTimestamp)

In the eventuality of the presence of a version 1 smart contract, it notifies about the import

of a subscription providing all the info.

Notifies about the import of a subscription from a

● ExchangeRatesUpdated(uint timestamp, uint dataInUsd)

Notifies about the change of the exchange rates used by the smart contract to convert DATA

COIN in dollars or euros and viceversa.

● WhitelistRequested(bytes32 indexed productId, address indexed subscriber)

Notifies about the request of being whitelisted to purchase a product.

● WhitelistApproved(bytes32 indexed productId, address indexed subscriber)

Notifies about the approval of whitelisting request

● WhitelistRejected(bytes32 indexed productId, address indexed subscriber)

Notifies about the rejection of whitelisting request

● WhitelistEnabled(bytes32 indexed productId)

Notifies about the enabling of the whitelisting functionality on a product.

● WhitelistDisabled(bytes32 indexed productId)

Notifies about the disabling of the whitelisting functionality on a product.

● TxFeeChanged(uint256 indexed newTxFee)

Notifies about the change of the marketplace’s owner transactions fee.

Figure 5 below shows the above listed interfaces and events in a visual form, including the components

in the marketplace system that use them (if any).

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 28

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 29

Figure 5: Marketplace Smart Contract Interfaces

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 30

6.3 Deployment

The deployment of the Marketplace Smart Contract is performed on the xDai blockchain. Currently

the Smart Contract is deployed and has the following address:

0x4B36680C67EFa16AED5a693726c20dB59428859C

The deployment has been performed using the Truffle library migration functionality [14]. The smart

contract can be also monitored on blockscout at the following address:

https://blockscout.com/xdai/mainnet/address/0x4B36680C67EFa16AED5a693726c20dB59428859C/

transactions

6.4 Source Code

The source code is available on a private repository on GitHub at the following link:

https://github.com/technology-exploration/kraken-marketplace-contracts

6.5 Baseline Technologies and Tools

The Marketplace Smart Contract is a fork of the Streamr-marketplace-contracts repository publicly

available on GitHub:

https://github.com/streamr-dev/marketplace-contracts

The modifications performed for KRAKEN include the setup of the deployment of the Marketplace

Smart Contract to occur on the xDai blockchain instead of Ethereum and other modifications related

to the Smart Contract that have contributed also to the Streamr-marketplace-contracts repository.

Specifically, the above-mentioned modifications have been applied to make the smart contract

independent from an already deployed version 1 of the Streamr marketplace smart contract. The

modifications are publicly visible at the following link:

https://github.com/streamr-dev/marketplace-contracts/pull/44/

The software is written in Solidity using the React framework. The relevant libraries already present

on the Streamr marketplace contracts repository are Openzeppelin, Truffle, web3, mocha.

https://blockscout.com/xdai/mainnet/address/0x4B36680C67EFa16AED5a693726c20dB59428859C/transactions
https://blockscout.com/xdai/mainnet/address/0x4B36680C67EFa16AED5a693726c20dB59428859C/transactions
https://github.com/technology-exploration/kraken-marketplace-contracts
https://github.com/streamr-dev/marketplace-contracts
https://github.com/streamr-dev/marketplace-contracts/pull/44/

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 31

7 MARKETPLACE XDAI WATCHER

This section describes the Marketplace xDai Watcher, this component is used by the Marketplace API

to get updates on events happening on the Marketplace Smart Contract and perform consequent

actions.

7.1 Description

The Marketplace xDai Watcher is an intermediary between the Marketplace Smart Contract and the

Marketplace API. Its role is to update the Marketplace API about any new events registered on the

Marketplace Smart Contract, including Data Product publication, modification, deployment,

subscription and deletion.

7.2 Interfaces

The Marketplace xDai Watcher does not offer any interface. However, it subscribes to the following

list of events on the Marketplace Smart Contract:

● ProductCreated

● ProductRedeployed

● ProductDeleted

● ProductUpdated

● ProductOwnershipChanged

● Subscribed

When any of these events are triggered, the Marketplace xDai Watcher updates the Marketplace API

on the following interfaces:

● POST/products/:id/setDeployed

● POST/products/:id/setUndeployed

● POST/products/:id/setPricing

● POST/subscriptions

7.3 Deployment

The deployment of this component follows the same process as the one described for the Marketplace

API. Please refer to Section 3.3 for further details.

7.4 Source Code

The source code for the Marketplace xDai Watcher is available on a private repository on GitHub.

7.5 Baseline Technologies and Tools

The Marketplace xDai Watcher is a fork of the streamr-marketplace-contracts repository, which is

publicly available on GitHub:

https://github.com/streamr-dev/streamr-ethereum-watcher

The modifications performed for KRAKEN include the setup of the Watcher to listen to a Marketplace

Smart Contract deployed on the xDai blockchain and to send updates on the Marketplace API

endpoints.

https://github.com/streamr-dev/streamr-ethereum-watcher

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 32

8 CONSORTIUM BLOCKCHAIN NODE

This section describes the Consortium Blockchain Network, a set of organization’s hosting nodes that

run the smart contracts which handle the marketplace catalogue, user related data and data access

control policies.

8.1 Description

The Consortium Blockchain Network (Built on Hyperledger Fabric [15] at the First Release consists of
two Organizations: Lynkeus and Tex. Each organization hosts two peer Nodes. Additionally, there is a
third logical Organization handling the Ordering Service which is called Orderer Organization and is
under the management of Lynkeus and Tex.

The Peer Organizations are joined in a channel in which a Chaincode (Package containing Smart
Contracts) is deployed. This Chaincode handles the user preferences and other related data regarding
the marketplace, data catalogue operations, as well as enforcing access control policies on the data
between a buyer and seller creating agreements.

Marketplace users interact with the Blockchain Network in the following ways:

• They register/enroll to an Organization’s Certificate Authority to obtain crypto material
(certificate) that allows them to perform chaincode operations.

• They can call chaincode functions via the marketplace UI such as creating the account, creating
a product or buying data.

For more information on the Blockchain Network and Hyperledger Fabric refer to Deliverable 5.3.

8.2 Interfaces

8.2.1 Application (Node JS) API

CA Services

• registerAppUser. Register a user on the selected Certificate Authority (CA)
• enrollAppUser. The user enrolls using a Certificate Signing Request and obtains a signed

certificate.
• updateUser. Update user data on the CA
• deleteUser. Delete a user from the CA
• isAdmin. Check if a certificate belongs to an admin
• reenrollAppUser. Reenroll a user to obtain a new certificate
• getExpirationDate. Get the max expiration date among all the certificates of a user

Cache Queries

• queryUsers. Query all users
• queryUser. Query user by username
• queryProducts. Query all products
• queryProduct. Query product by id
• queryCatalogue. Query the available products (All products with non-expired certificates)
• queryFilteredProducts. Query and filter the catalogue to match the browsing user’s

preferences

Block Listening

• createBlockListener. Create a listener that fetches each newly appended block
• removeBlockListener. Remove a listener
• handleTransactionData. Extract all the Events and EventData from the fetched blocks and

forward them to the database

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 33

Util

• connectGateway. Connect to the Fabric Blockchain Network (all nodes) using a connection
profile.

Signing Offline

• sendTransaction. Sign a transaction manually on the user side and send it to the network.

Documentation is generated using jsdoc and will be published at a later stage.

8.2.2 Chaincode API

User Credentials

• CreateUser. Create a user account on the ledger
• UpdateUser. Update a user account
• ReadUser. Read user data
• DeleteUser. Delete a user account

Data Catalogue

• CreateProduct. Create a product
• UpdateProduct. Update a product
• ReadProduct. Read product data
• DeleteProduct. Delete a product
• BuyProduct. Calls Agreements Contract to validate the eligibility of the buyer to access this

product

Agreements

• NewAgreement: Store a new agreement if the validation is successful and the transaction
status

• UpdateAgreement: Update an agreement’s status

Documentation is generated using godoc and will be published at a later stage.

8.2.3 Installation APIs (CLI)

Regarding the setting up of the network and the organizations, we have created APIs that simplify the
most essential processes of a peer and a CA client. These APIs can be used by a network operator to
set up an organization, join a peer to channel, install chaincodes, manage the CAs, and so on.

CA Client API Tasks

Register user to TLS CA / CA

Enroll user

Re-Enroll user

View list of Identities in CA

Setup and launch CA Server

Setup Organization MSP

Table 2: CA Client API Tasks

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 34

Peer API Tasks

Creates a channel transaction from profile config Install chaincode to peer

Submit channel transaction to orderer Query installed chaincodes on peer

Joins a peer to channel Approve chaincode as Org

Create and submit anchor peer update transaction Query approved chaincodes on channel

List channels a peer has joined Check commit readiness of chaincode

Package a chaincode Commit chaincode definition to channel

Query committed chaincodes on channel Fetch configuration of channel

Create an update transaction to add an
organization

Sign configuration transaction as
organization

Start a node, peer/orderer

Table 3: Peer API Tasks

8.3 Deployment

Each of the components mentioned above represents a different physical or virtual node. In our

implementation, each node is deployed as a docker container inside a Virtual Machine (VM) hosted in

cloud services. The TLS CA is only used for the enrollment of nodes, so after the initial enrollment, it

will be down if another node will not be joined to the network. Thus, we have used one VM for both

CAs for better resource management.

The individual network nodes are depicted in the following figure.

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 35

Figure 6: Individual network nodes

The deployment of the network is a collaborative effort between the organizations and requires

several steps to be fully set up. The steps are well defined in a file called “DEPLOY.md” in the repository.

8.4 Source Code

The Hyperledger Fabric network code is currently stored on a private repository of the developer and

is shared with members of other teams.

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 36

8.5 Baseline Technologies and Tools

8.5.1 Private Network

Hyperledger is the framework leveraged in Kraken building on the MHMD work on this front, expanded

for the specific requirements at hand. Specifically, the Fabric instance can achieve two times more

transactions per second (TPS) with an appealing implementation and code structure from a

development standpoint.

8.5.2 Cache Database

This database is a MongoDB instance.

8.5.3 Smart Contracts

HLF smart contracts are written in GO, which is strict in terms of syntax and logic and is thus of great

use when writing smart contracts. These contain data access parameters that are computed by the

filtering algorithm running on the Blockchain to compute data access permissions.

8.5.4 Application

The backend application is written in Node.js and is built mainly using HLF’s Node SDK which utilizes

functionalities to provide connection and interaction with the blockchain network. The application is

the middleware between the network and the user and has been optimized to achieve high

throughput, security, and privacy.

8.5.5 Documentation

The smart contracts code is documented using godoc and its standard code documentation practices.

In respect of the Node.js application, we used the tool JSDoc.

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 37

9 MPC NODE

This section describes the MPC nodes component. This component is used by the KRAKEN platform as

a mechanism for key distribution and will also be used to perform secure computation / analytics on

published datasets. We briefly summarize the component here, however for further details please

refer to Deliverable 4.3.

9.1 Description

Secure Multi-Party Computation allows users to evaluate various programs including analytics on

encrypted data, without revealing the data itself. This is achieved by splitting the queries among MPC

nodes that can jointly and securely perform the desired computation. The privacy of the dataset is

guaranteed by the decentralization.

The KRAKEN platform will use MPC as a mechanism for the key distribution and to evaluate various

analytics on the datasets, see D2.4 and D5.3 for further details on MPC and a detailed explanation of

these two applications.

9.2 Interfaces

A MPC node is a service interfacing in the following way:

- Accepts requests from the Marketplace API component.

- Returns results of the computations to the Marketplace API component.

- Communicates with other MPC nodes to securely evaluate functions.

All the above communication is done through sockets. See D4.3 for a detailed explanation of the

structure of the requests and responses. However please note that while the MPC nodes directly

communicate only with the Marketplace API, this component serves only as a connector between data

sellers, data buyers and the MPC nodes in the KRAKEN platform. No data can be revealed to the

Marketplace API.

9.3 Deployment

MPC nodes can be deployed as Docker containers with specified addresses of the other MPC nodes.

In the first release we will deploy 3 nodes on XLAB servers, while in the following releases the nodes

will be distributed among the partners, presumably XLAB, ATOS and TEX.

9.4 Source Code

All of the source code is available to all the partners in the KRAKEN consortium in a private repository.
We plan to make this repository public in the future.

9.5 Baseline Technologies and Tools

The MPC node component is implemented in Go programming language managing the communication

and scheduling of tasks. It uses a fork of SCALE-MAMBA [16] https://github.com/KULeuven-

COSIC/SCALE-MAMBA, for building and evaluating secure multi-party computations. It uses a

homomorphic proxy encryption protocol for decentralized key management, please see D5.3 for

further information.

https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://github.com/KULeuven-COSIC/SCALE-MAMBA

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 38

10 MARKETPLACE SSI AGENT

To deploy an SSI solution that ensures a smooth interaction between the user and the marketplace for

registering, authenticating and sharing data within the marketplace, different components of the SSI

must be integrated in the architecture. There is a specific component called Ledger uSelf Broker that

will be responsible for facilitating the integration with the marketplace.

10.1 Description

The Ledger uSelf Broker will be located between the Marketplace services and the SSI Server Agent.

This way, it will act as a facilitator between the marketplace and the user (via mobile app), easing the

complex interactions in the key processes of an SSI solution like the exchanging of the DIDs, when the

verifiable credentials are issued or when the proof shall be presented. For that purpose, only three

requests are needed, one for each of these processes. This comes from the Hyperledger Aries protocol

implementation used in the SSI approach.

More information related to the mentioned SSI Server Agent and the other SSI components, i.e. the

SSI Mediator Agent and the SSI Mobile Agent can be found in the deliverable D3.1 Self-Sovereign

Identity Solution First Release, where it is explained that those agents will use the underlying

framework of Hyperledger Aries.

10.2 Interfaces

It is possible to make a distinction between the entry points of the Ledger uSelf Broker, having a few

for the usage and the rest for configuring and managing the server.

The following are dedicated for the usage:

• POST/connections/generate-invitation

For generating an invitation to be translated into a QR code

• POST/issue-credential/issue

For issuing a credential.

• POST/present-proof/request-proof

For requesting a proof

• GET/kms/init

Initialization method

More information regarding the rest of the interfaces can be found in D3.1.

10.3 Deployment

Regarding the deployment, this component must be deployed as a docker container following the

diagram in Figure 7 and the instructions together with the source code (see Section 10.4).

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 39

Figure 7: Ledger uSelf Broker deployment

10.4 Source Code

The source code for the Ledger uSelf Broker is in a private repository.

There it is possible to obtain not only the source code but all the needed information for the

deployment, configuration and some instructions on the usage.

10.5 Baseline Technologies and Tools

The implementation of the Ledger uSelf Broker has been made in Kotlin language [17], based on the

Go language implementation provided by the Hyperledger Aries framework [18].

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 40

11 Conclusion

This D5.5 document describes the current software of the initial KRAKEN marketplace implementation.

As part of this initial release a first marketplace implementation has been established for both the

education and biomedical pilot domains which allows data provider and data consumers to exchange

data using the encrypted batch data transfer through directory sharing modality.

This implementation has resulted from intensive design and development efforts to link multiple

technology components at varying levels of technological maturity. The high-level technological

components include a forked and heavily adapted instance of the Streamr marketplace codebase, the

Lynkeus MHMD consent management / data access layer (Hyperledger Fabric Blockchain), the Self

Sovereign Identity system and the SMPC Network, which in this first release is used as a mechanism

for key distribution in the batch data sharing use case and in a future release will be used to perform

secure privacy preserving computations / analytics on data.

In the following months of the project until the final marketplace release in July 2022 (month 32),

development efforts will continue to further mature and polish the marketplace user workflows and

GUI for navigating the marketplace, and publishing, consuming and managing batch Data Products.

As discussed earlier in this paper, an initial integration with the SSI has been realised, integrating with

the Agent’s uSelf broker. However, the present proof functionality and the possibility to specify a

credential ID must be integrated to finalise the processes of registration and login using SSI. It is

expected that this shall be completed in advance of the first round of user evaluations. The

marketplace mobile application is also being developed on React Native and React.js javascript

frameworks to seamlessly interact with the rest of the components in the platform. The application

will run on Android phones.

Further future efforts will also be focused into the development of the remaining two data sharing

modalities which include Secure Multiparty Computation, where the marketplace will further exploit

the SMPC network for privacy preserving analytics, and the transfer of encrypted streaming data,

which will exploit the Streamr Network for real-time data transportation.

All updates and changes to the marketplace software between now and July 2022 will be reflected in

the final report on the marketplace software accompanying Deliverable 5.6 - KRAKEN Marketplace

Final Release.

D5.5 KRAKEN Marketplace first release

©KRAKEN Consortium 41

12 References

[1] https://streamr.network/discover/marketplace

[2] http://www.myhealthmydata.eu/

[3] https://streamr.network/docs/data-token

[4] https://www.xdaichain.com/

[5] https://github.com/

[6] https://travis-ci.org/

[7] https://aws.amazon.com/

[8] https://aws.amazon.com/elasticbeanstalk/

[9] https://www.mongodb.com/

[10] https://mongoosejs.com/

[11] https://metamask.io/

[12] https://docs.soliditylang.org/en/v0.4.24/index.html

[13] https://reactjs.org/

[14] https://www.trufflesuite.com/docs/truffle/getting-started/running-migrations

[15] https://www.hyperledger.org/use/fabric

[16] https://wiki.mpcalliance.org/Scale_Mamba.html

[17] https://kotlinlang.org/

[18] https://github.com/hyperledger/aries-framework-go

https://streamr.network/discover/marketplace
http://www.myhealthmydata.eu/
https://streamr.network/docs/data-token
https://www.xdaichain.com/
https://github.com/
https://travis-ci.org/
https://aws.amazon.com/
https://aws.amazon.com/elasticbeanstalk/
https://www.mongodb.com/
https://mongoosejs.com/
https://metamask.io/
https://docs.soliditylang.org/en/v0.4.24/index.html
https://reactjs.org/
https://www.trufflesuite.com/docs/truffle/getting-started/running-migrations
https://www.hyperledger.org/use/fabric
https://wiki.mpcalliance.org/Scale_Mamba.html
https://kotlinlang.org/
https://github.com/hyperledger/aries-framework-go

www.krakenh2020.eu

This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant

agreement No 871473

@KrakenH2020

Kraken H2020

