

This project has received funding from the European Union’s Horizon 2020 (H2020)

research and innovation programme under the Grant Agreement no 871473

www.krakenh2020.eu

BROKERAGE AND MARKET PLATFORM

FOR PERSONAL DATA

D5.3 Initial KRAKEN marketplace

integrated architecture document

D5.3 Initial KRAKEN marketplace integrated architecture

document

Grant agreement 871473

Work Package Leader LYNKEUS

Author(s) Davide Zaccagnini, Minos Garofalakis, Alexandros Tragkas (LYNKEUS)

Contributors Rob Holmes (TEX), Donato Pellegrino (TEX), Davide Porro (INFOCERT),

Angel Palomares (ATOS), Tilen Marc (XLAB), George Pikramenos,

Konstantinos Kechagias, Stefan More (TUG), Sebastian Ramacher (AIT),

Karl Koch (TUG)

Reviewer(s) Stephan Krenn (AIT), Giancarlo Degani (INFOCERT)

Version Final

Due Date 30/06/2021

Submission Date 30/06/2021

Dissemination Level Public

Copyright

© KRAKEN consortium. This document cannot be copied or reproduced, in whole or in part for any
purpose without express attribution to the KRAKEN project.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 3

Release History

Version Date Description Released by

V0.1 04/07/2021 Draft ToC Davide Zaccagnini

V0.1 06/03/2021 Complete Draft including contributions

from TEX, AIT, TUG, ATOS, ICERT
Davide Zaccagnini

V0.2 06/22/2021 Reviewed by AIT and ICERT, changes

incorporated. Sent to the Coordinator for

submission

Davide Zaccagnini

V1.0 30/06/2021 Submitted version Atos

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 4

Table of Contents

List of Tables ... 6

List of Figures.. 7

List of Acronyms ... 8

Executive Summary... 9

1 Introduction... 10

1.1 Purpose of the document ... 10

1.2 Structure of the document ... 10

2 The KRAKEN Data marketplace .. 11

3 Permission Management ... 14

3.1 Distributed, peer-to-peer data access control .. 14

3.2 Blockchain technologies and new data ecosystems .. 14

3.3 Hyperledger Fabric ... 14

3.3.1 Organization ... 14

3.3.2 Certificate Authority (CA) .. 15

3.3.3 Channel ... 15

3.3.4 Ledger ... 15

3.3.5 World State ... 15

3.3.6 Chaincode ... 15

3.3.7 Peer .. 15

3.3.8 Orderer ... 15

3.3.9 Chaincode (Smart Contracts) ... 15

3.4 Access Control ... 16

3.4.1 Data access control layer policies .. 16

3.4.2 Overall System Design ... 18

3.4.3 Network Architecture .. 19

3.4.4 Filtering Algorithm .. 21

3.4.5 Application-level integration ... 22

3.5 Data access modalities ... 25

4 Transaction management, the Streamr data infrastructure .. 27

4.1 Batch data.. 27

4.2 Biomedical streaming data ... 29

5 KRAKEN mobile application .. 31

5.1 Application architecture ... 31

6 The Data protection layer .. 32

6.1 SMPC internal architecture and privacy features .. 32

6.2 Protected encryption key sharing for batch data .. 32

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 5

6.2.1 Distributed analytics via SMPC .. 34

6.2.2 Protection of streaming data ... 35

7 Self-Sovereign Identity ... 36

7.1 User Authentication ... 36

7.1.1 The KRAKEN approach... 37

7.2 Educational data exchange through Verifiable Credentials ... 37

7.2.1 Education data exchange, user workflow .. 38

7.2.2 Application-level integration ... 39

8 Outstanding issues in decentralization ... 41

8.1.1 Possible architecture update ... 41

9 Conclusion ... 43

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 6

List of Tables

Table 1: Blockchain policies ..17
Table 2: CA API Tasks ...25
Table 4: Peer tasks ...25

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 7

List of Figures

Figure 1 The KRAKEN Technology Stack ...11
Figure 2 Architectural diagram ..12
Figure 3: Users, data access policies and organizations ..16
Figure 4: Blockchain system design ..18
Figure 5 Network Architecture ...19
Figure 6: KRAKEN HLF deployment architecture ..21
Figure 7: User registration flow..23
Figure 8: User transaction flow ..24
Figure 9 Transaction Management ..27
Figure 10 Batch data transaction ...28
Figure 11 Biomedical data transactions ...30
Figure 12: Secure secret keys sharing ..34
Figure 13: SSI architecture ...36
Figure 14 Wallet and agent in the educational pilot ..38
Figure 15 Educational Pilot Architecture ..38
Figure 16 The connector after a student connected their KRAKEN wallet ...39
Figure 17 The Connector before a student exports a diploma credential to their wallet39
Figure 18 Fully decentralized design ..42

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 8

List of Acronyms

Acronym Description

CA Consortium Agreement

WP Work Package
BD Batch data

CSR Certificate Signing Request

DAC Data Access Control
DID Distributed Identifier

DLT Distributed Ledger Technology

GDPR General Data Protection Regulation
HLF Hyperledger Fabric

KRAKEN HORIZON 2020 project KRAKEN (Brokerage and market platform for personal data)

MPC Multiparty Computation
MSP Membership Service Provider

SC Service Certificate

SD Streaming Data
SIS Student Information System

SM Smart Contract

SMPC Secure Multiparty Computation

SSI Self-Sovereign Identity

SSI SDK SSI Software Development Kit

TPS Transactions per Second

VC Verified Credential

UI User Interface

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 9

Executive Summary

The KRAKEN marketplace is designed to allow the highest level of control over personal and

institutional data assets by their legitimate subjects and/or controllers, i.e. data sellers, and the most

efficient and costs-effective way to access such resources by buyers, i.e. data users. The design is

strongly focused on decentralized, integrated architectures in the areas of identity management, data

access permissioning and transaction management, rather than centralized control by third parties.

The architecture leverages state of the art trends in the area of distributed, peer to peer networks and

new security paradigms. Multiple permissioned blockchain's are interconnected and integrated with

both application layers and data protection infrastructures. The current scope defines all key aspect

of the marketplace architecture. Areas currently being designed include the Kraken mobile app and

detailed integration of the Secure Multiparty Computation system for distributed analytics.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 10

1 Introduction

1.1 Purpose of the document

This deliverable 5.3 describes the architecture of the KRAKEN marketplace an integrated set of

infrastructures implementing two pilot use cases for the exchange of biomedical and educational data.

This report serves to inform internal and external stakeholders on the inner workings of the platform,

also for communication purposes, and to base further designs of components and functionalities for

the remainder of the project, including the definition of interfaces with external systems, the KRAKEN

mobile app, of the verified credential systems and the SMPC infrastructure. The integration of all these

additional components has been broadly scoped and it’s being detailed during the current period.

This document draws from multiple other sources including D2.2 Intermediate Kraken architecture,
D2.6 Marketplace Technical Specification and D7.2 Ethical and legal requirement specification

1.2 Structure of the document

The document is structured in eight (8) main sections dealing with respective components on the

KRAKEN marketplace architecture. Outstanding issues and strategic directions for the following period

of the project are discussed at the end.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 11

2 The KRAKEN Data marketplace

The KRAKEN marketplace architecture consists of three main functional areas, as indicated in the

diagram below. These are:

1. The permissioning layer where data access is controlled leveraging the Lynkeus Hyperledger

Fabric Blockchain

2. The data access layer providing multiple infrastructures and methods allowing secure and

private access to data products including the SMPC system, the TEX streaming data

infrastructure and the batch data exchange system developed in the first period of the project.

3. The transaction management layer featuring technologies supporting user workflows,

payments and fulfillment, mostly leveraging the TEX, Streamr marketplace.

These three layers are functionally integrated to first grant or deny data access based on the legally

binding rights, then provide such access on three different modalities (SMPC, batch or streaming), and

then monitoring the fulfillment of all key transaction steps.

Figure 1 The KRAKEN Technology Stack

From a functional perspective (see below) the Marketplace API, i.e. the back-end, connects both the

desktop and the mobile apps to all other components. In particular, SSI identities are passed to the

data access layer on which permissions are computed. Positive access decisions are passed through

the API module to the data access layer and then to the xDai payment and fulfilment system.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 12

Figure 2 Architectural diagram

This architecture is a result of parallel and iterative design efforts to link multiple modules and

infrastructures, each at different stages of technological maturity. These include the Streamr

marketplace, the Lynkeus data access layer, the Self Sovereign Identity system, the Verified Credentials

infrastructure and the data protection layer, which is itself composed of the SMPC system and ad-hoc

data protection modules (ex. Batch data encryption). The guiding principle of such design, and indeed

of the project itself, is to implement true decentralisation throughout the marketplace and the overall

platform itself while at the same time providing the highest level of privacy protection for its users and

the data they will exchange. Compliance with national and European privacy laws has been, in this

view, a key concern in the development of this integrated system, In strict conjunction with WP7,

intermediate designs, and implemented components with their integrations, were systematically

reviewed from a legal and ethical stand point following a privacy by design approach. This work is still

ongoing as new modules and UI extensions are added with the final aim at automating the

enforcement, by the platform itself, of legally and ethically binding terms users can enforce for the

temporarily access and process of personal data for predefined purposes.

From a functional standpoint the architecture is divided in three areas:

1. Permission management, mostly implemented by the Lynkeus Hyper Ledger Fabric blockchain

in conjunction with the SSI system for the identification, authentication and credentialing of

both individual and organisational users.

2. Data protection layer, which implements a variety of data security and privacy preserving

modules and includes the Secure Multi Party Computation system employed for both

distributed data analytics and encryption keys sharing mechanism, in addition to the standard

data protection functionalities such as encryption at rest and transaction of batch and

streaming data assets.

3. Data transaction management, mostly implemented through the Streamr marketplace

technology which provides both user-facing and back-end functionalities, such as UIs,

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 13

payments execution and control, secure transfers of streaming data, data product visualization

and more.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 14

3 Permission Management

3.1 Distributed, peer-to-peer data access control

The permission management layer is tasked with controlling what users have legitimate, compliant

access to what data products, based on the policies set by data subjects or controllers to share their

data and it is based on the Hyperledger Fabric blockchain developed by Lynkeus over the course of

multiple EU-funded research projects, The system implements a set of healthcare specific data access

permission criteria which are set by both individuals and organisations interested in sharing their data

in the network and has been extended to cover educational data transactions. A filtering algorithm

running on the blockchain checks data access requests against such criteria so to allow a specific data

access request to be fulfilled, or not, based on legal parameters (GDPR and national regulations), local

and individual policies specified by the data controller or subject, such as the intended uses of the data

specified in informed consent issued by the data subject(s).

3.2 Blockchain technologies and new data ecosystems

Blockchain, a type of Distributed Ledger Technology (DLT), is a sequence of blocks of data records

stored in a distributed, transparent, and immutable infrastructure. Blockchain utilizes practically

unbreakable cryptographic schemes, which enforce privacy while decentralizing the decision-making

process through a set of agreed upon network policies (see below), not to be confused with data access

policies set by data subjects and controllers. Applications built on top of blockchain can therefore

access a trust-less transaction management system that enforces the compliant execution of such

transactions, disincentivizing malicious actors.

3.3 Hyperledger Fabric

Hyperledger is a collaboration between the Linux Foundation and big tech organizations including IBM,

Intel, Consensys, and others. Hyperledger Fabric (HLF), in particular, provides a highly versatile

modular infrastructure for enterprise use cases. Providing tools to implement a permissioned network,

Fabric allows for pluggable consensus mechanisms such as those KRAKEN implements for gathering

informed consent from user regarding the use of their data. Its underlying architecture gives

organizations the ability to customize multiple aspects of the network in terms of membership

authorization and access control management while achieving great performance in terms of

transactions per second (TPS).

 The KRAKEN project architecture implements some of these key concepts which are briefly explained

below as they are crucial for the understanding of the abstract layer of the architecture, i.e. the policies

governing relationships between actors in the marketplace and therefore it's actual implementation

3.3.1 Organization

Every entity inside the HLF network is an organization and every member making transactions must

belong to one. Each organization can set up roles for their members, such as “admin” or “peer”, not

only to assign tasks and credentials accordingly but also to enforce, in the case of KRAKEN, access

control policies. Technically, an organization is represented by a folder containing encrypted material

called Membership Service Provider (MSP). The MSP is the means by which validation is performed

when organizations or members transact. Lastly, organizations form consortiums, set consensus

policies, and decide on the network configuration.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 15

3.3.2 Certificate Authority (CA)

A Certificate Authority is an entity issuing certificates to authenticate organizations or users so they

can perform actions inside the blockchain network. In essence, CAs sign Certificate Signing Requests

(CSR) submitted by members who have been first registered by an admin. Also, an organization

typically has a dedicated CA which is used to identify their own members. Other than that, they are

responsible for checking if a certificate has expired, storing roles of members, etc.

3.3.3 Channel

A channel is a sub-network inside the system network which allows for private communication

between organizations and organizations can specify their own rules for how the channel will be

operated. Every channel may be created for a dedicated purpose and run specific smart contracts,

depending on the use case. Also, each channel maintains a separate ledger.

3.3.4 Ledger

A ledger is a journal recording the history of transactions. The HLF ledger consists of the blockchain,

which is an immutable transaction log, and a database called World State.

3.3.5 World State

The World State is a database keeping the current (latest) values for all the keys on the blockchain. The

World State can be directly determined by reviewing the ledger and getting the latest state. The need

for this database is to support efficient chaincode operations in terms of performance.

3.3.6 Chaincode

A chaincode is a package containing multiple smart contracts. Access control policies can be enforced

inside the chaincode to ensure the eligibility of an entity performing read and write operations on the

ledger.

3.3.7 Peer

Peers are nodes responsible for storing ledgers, running chaincodes, and endorsing transactions. When

a transaction is submitted to the network, it is firstly handled by peers who execute the transaction

proposal and endorse it if it produces a valid outcome. The endorsements must satisfy the channel

policy for the transaction to be considered valid and subsequently get included in a block. After the

endorsements are collected, the proposal is passed to the orderers.

3.3.8 Orderer

Orderers are nodes who packs transactions in an order and includes them into blocks after validating

that they satisfy the channel policies. In essence, the process of executing and validating transactions

is split, in Fabric, to reduce the work done by individual nodes and thus achieving greater performance

and TPS. When blocks are created, orderers disseminate them to peers who in turn append them to

the chain-code and filtering algorithm. Upon selection to browse the product catalogue, the

application fetches the user's credentials from the database. The purposes property from the user

credentials is checked against the products' purposes and filters all the products whose purposes do

not match the user's credentials. In this manner, the data marketplace offers views that are relevant

to individual users/product buyers.

3.3.9 Chaincode (Smart Contracts)

The fundamental objects governing data access permissions in KRAKEN are Smart Contracts (SCs)

which handle and orchestrate compliance between users and products. The core operation in general

terms needed to be secure, transparent, and immutable is the eligibility of data exchange between

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 16

participants. The diagram below illustrates relationships between users, data products and data access

permissions as mediated by the chaincode.

Figure 3: Users, data access policies and organizations

3.4 Access Control

The diagram above illustrates one of the two custom access policies allowed by Hyperledger Fabric in

one of its layers, the chain code. An additional layer is provided by the channel configuration, where

organizations can define how each member is authorized to perform various actions or have access to

Fabric’s resources. For example, in a consortium of organizations with organizations A, B and C, it is

possible to set that the majority of organizations must sign a chaincode update transaction to be

considered eligible. Or alternatively that A can be thought of as an owner and define that only A can

update the chaincode. These policies have been set for KRAKEN and agreed upon with LYN, TEX, ATOS

and ICERT as a prerequisite to deploy the data access layer, which, once deployed, enforces them by

design.

3.4.1 Data access control layer policies

Before deployment in order to configure the Hyperledger Fabric policies, the organizations must first

decide how the channel will be governed. The initial Lynkeus-TEX consortium, with the approval of the

other organizations, has decided to follow the policies defined in the following table.

Org (MSP) Channel Update Endorse

Lynkeus required required

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 17

LynkeusUsers

TEX required required

TEXUsers

Other (non user) required majority

(including LYN,TEX)
optional

Table 1: Blockchain policies

The chaincode layer, on the other hand is where data products access control is implemented via

attributes. In any smart contract call, the contract can have access to the caller’s certificate, making it

possible to make decisions based on the organization that the caller is a member of. For example, data

affecting a user registered in organization A can be set to have an endorsement policy requiring that A

must endorse the transaction. As a practical example a data seller acting on behalf of an organization

such as a hospital or a university on the marketplace, obtains in this way valid permission to sell access

to the organization’s data levering this mechanism.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 18

3.4.2 Overall System Design

The system consists mainly of three components: network, application, and smart contracts. The

network acts as a base layer to deploy the marketplace, while the application holds the back-end logic

of the software stack. Essentially, the application handles user requests and database management

and acts as middleware for the user-blockchain interaction as depicted in figure below

Figure 4: Blockchain system design

In order to maintain security and limit exposure, nodes are exposed only to the rest of the network

and the application. As shown above, there is no direct connection between the user and the

blockchain network. Consequently, all requests are passed to the back-end and forwarded to the

relevant nodes.

The first challenge to be addressed with this approach is enforcing decentralization. In the standard

implementation, the Fabric SDK both acts as a client and signs transactions on behalf of the user. This

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 19

approach assumes that crypto material is centralized, or that the application has access to a user's

secret key. Therefore, since transactions are directed from the application, the user must have already

signed the transactions with their secret key and only use the application as a client. To address this

issue, we have designed a solution where the user, as the only holder of their private key, signs a

transaction manually and forwards the transaction to the application. This way the network maintains

trust, security, and privacy, while the user can safely assess that they and only they can alter their

protected data, as explained below.

3.4.3 Network Architecture

The decentralized network, built on top of Hyperledger Fabric, aims to be the pillar of the whole

marketplace infrastructure. The current pilot deployment consists of 2 peer organizations, Lynkeus

and TEX, that represent the initial consortium. Also, an additional organization which we name

OrdererOrg has the role of the Ordering Service in the network. OrdererOrg is not a distinct

organization but is represented as such for the sake of clarity and role separation and will be governed

by both Lynkeus and TEX. The organizations are joined to a channel in which a chaincode is deployed

that handles the user and data logic. The network architecture is shown in the figure below.

Figure 5 Network Architecture

3.4.3.1 Components

Each organization comprises the following components:

● 2 Identity CAs

● TLS CA

● Organization’s MSP

● Peers/Orderers

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 20

The identity CA is used as the root certificate authority which issues enrollment certificates. These

certificates form the identities of all the nodes and users in the network and guarantee that they are

approved by a consortium member. Moreover, each certificate holds information regarding the role

of identities. These different types of roles are called Node OUs (Organizational Units) and currently,

the following four roles are accepted on HLF: admin, peer, orderer, client. Using this role distinction

design we are able to create special access control policies and separate the network's actors.

Each CA server deploys 2 distinct CAs, one for the members of the organization and one for the users
that will be registered. The reason for this is not only to differentiate the root of trust for the members

and the users and set specific certificate parameters for these two, but also to simplify the process of

setting access policies within the channel configuration.

The Trasport Layer Security CA is required to enforce security against potential distributed network

attacks. This CA is always deployed first and provides the certificate for all the communications

between the nodes in the network. All nodes are deployed with two-way (server and client)

authentication, adding an extra layer of security.

Next, we have the most important component of an organization, the organization's MSP

(Membership Service Provider), which forms its identity and allows for participation in the channel.

Under each MSP, all nodes and user transactions are verified against the Ordering Service where it

checks two conditions:

1. The transactor is a member of an organization joined in the channel.

2. The transactor is eligible to perform the intended action based on the channel's policies.

Both the TLS and Identity root certificates are stored in the channel configuration, so any member of

the channel can message and authenticate messages and actions of other members.

Each peer organization hosts 2 peers in the initial deployment. While an organization can be a member

of the channel, it is not necessary to host peers. It is important for organizations that endorse

transactions based on the channel policy to have peers joined to the channel. For that reason, each of

the initial organizations deploys 2 peers for the role of endorsing transactions. In the following

sections, we will present the channel policies set for the most relevant resources.

Lastly, the Orderer organization, which deploys the ordering service, hosts 3 orderers. Being

responsible for the block dissemination to peers, if the ordering service does not form a quorum, the

network stops producing blocks and thus transactions cannot be committed. In our case, 3 orderers

provide fault tolerance of 1 node.

3.4.3.2 Deployment

Each of the components mentioned above represents a different physical or virtual node. In our

implementation, each node is deployed as a docker container inside a Virtual Machine (VM) hosted in

cloud services. The TLS CA is only used for the enrollment of nodes, so after the initial enrollment, it

will be down as long as another node will not be joined to the network. Thus, we have used one VM

for both of the CAs for better resource management. The individual network nodes are depicted in the

following figure.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 21

Figure 6: KRAKEN HLF deployment architecture

3.4.4 Filtering Algorithm

A user has the ability to browse the data marketplace and select data products to purchase. However,

since buyers have predefined purposes and other preconditions (ex. country of residence and

processing, age etc) for purchasing data products, it is essential to present only the products that the

user is eligible to purchase. For this reason, we have implemented a filtering algorithm. Upon selection

to browse the product catalogue, the application fetches the user's credentials from the database. The

purposes property, along with other criteria, from the user credentials is checked against the products'

permissions and filters out all the products whose access rights do not match the user's credentials. In

this manner, the data marketplace offers views that are relevant to individual users/product buyers.

The Data Catalogue Service Certificate (SC) provides Create, Read, Update, Delete (CRUD) functionality

for the products of the users. In addition to the basic operations, this function also invokes the

Agreements contract when the user requests to buy a product. Each product is associated with a

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 22

strictly selected policy which in turn defines its lifecycle. The seller inserts the purposes that allow for

use by another user. Although a user as a buyer has stated reasons for buying in their credentials, it is

mandatory to state the reason for buying at each individual product they wish to buy, which is then

handled by the Agreements contract. The Agreements SC is invoked on the buy product operation to

decide if a user is eligible to access a specific product by matching the product’s policy with the user’s

reason for buying. Specifically, the buyer's given use case is legally bound and recorded permanently

on the ledger. If the agreement results are eligible, a transaction called agreement is stored on the

ledger stating that the buyer has the authority to buy this product. Lastly, functionality is provided that

allows for updating this transaction status via the application in the subsequent steps that follow the

data lifecycle.

3.4.4.1 Cache Database

The Cache Database is an off-chain solution to provide faster performance as well as greater flexibility

for query handling. Since the platform can be used for data analytics, it is important to build a viable

solution that allows for seamless additions in the future, further enhancing the platform's functionality

and value. Our Cache Database is implemented as a MongoDB instance which replicates the data on

the ledger via block event listening. As most of the blockchain platforms with smart contracts, HLF

allows setting events inside the contracts to notify applications of updates on the ledger. Thus, a block

listener updates the database with the data associated with the event and is also used to provide

updates on the client side of the application. Additionally, our cache implementation allows for the

reconstruction of the database from block 0 instantly without facing issues such as race conditions or

data mismatches. Due to the asynchronous nature of such functionalities, it is essential to keep the

data synchronized and inserted in the DB in the correct order. In order to accomplish this, we have

created a mutual exclusion (mutex) implemented with queues on every user key which locks every

time there is an ongoing operation on the DB. The key is unlocked once the DB finishes the operation.

The last thing to note is that the Cache Database is only updated via the block listener and exposes an

API for querying operations.

3.4.5 Application-level integration

3.4.5.1 User registration and enrollment flow

During the registration and enrollment process, a user must be guaranteed they are the only party that

has had access to their secret key. By default, the API exposed by Fabric uses a wrapper for this process

in which a client connects directly to the network, keys are generated locally, a Certificate Signing

Request (CSR) is created and proceeded to the CA where it is validated. Since the architecture of this

platform prohibits users from connecting directly to the network, we have split this process to ensure

that the application does not have access to the user's secret key. To achieve this requirement, we

have manually implemented the key generation and the CSR on the client side from where it is

forwarded to the backend and then to the relevant CA. The registration process is made clear on the

sequence diagram. Note that, in Fabric, registration and enrollment are two different processes but

we are referring to the overall implementation of a user being a member of the network by getting a

certificate.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 23

Figure 7: User registration flow

3.4.5.2 User transaction flow

In the same manner, as the registration and enrollment process, the SDK wrapper reads the signer's

key imported from the file system and uses it to sign transactions and broadcast them to the network.

Since the user communicates via the application, transactions must be signed locally on the client side

and handled by the application, consequently preserving the privacy of their crypto material.

Essentially, the tasks of Fabric's transaction flow must be split. The sequence of the transaction
lifecycle is:

1. The user imports the secret key on the browser where they sign the initial proposal which

contains the transaction willing to make, such as creating a new product.

2. The transaction is forwarded to the peers, which validate and endorse the proposal.

3. The endorsed proposal is returned to the user who signs a commit proposal.

4. The commit proposal is forwarded to the orderers who in turn validate the policies and

append the transaction to a block.

5. The block is disseminated to peers, added to the ledger, and the application handles the

response.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 24

The offline-signing transaction flow is also illustrated on the sequence diagram below.

Figure 8: User transaction flow

3.4.5.3 Installation APIs

Regarding the setting up of the network and the organizations, we have created APIs that simplify the

most essential processes of a peer and a CA client. These APIs can be used by a network operator to

set up an organization, join a peer to channel, install chaincodes, manage the CAs, and so on.

CA Client API Tasks

Register user to TLS CA / CA

Enroll user

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 25

Re-Enroll user

View list of Identities in CA

Setup and launch CA Server

Setup Organization MSP

Table 2: CA API Tasks

Peer API Tasks

Creates a channel transaction from profile config Install chaincode to peer

Submit channel transaction to orderer Query installed chaincodes on peer

Joins a peer to channel Approve chaincode as Org

Create and submit anchor peer update transaction Query approved chaincodes on channel

List channels a peer has joined Check commit readiness of chaincode

Package a chaincode Commit chaincode definition to channel

Query committed chaincodes on channel Fetch configuration of channel

Create an update transaction to add an organization Sign configuration transaction as organization

Start a node, peer/orderer

Table 3: Peer tasks

3.5 Data access modalities

As the data access permission layer allows compliant data access requests to be executed, permissions
are passed to the data transaction player which allows three types of data access.

1. Batch data transfer through directory sharing.
Data storage happens always outside of the platform, which provides only encrypted local
addresses to the buyer at the time of purchase. Sellers data are also encrypted and the
platform, without storing or in other ways coming into contact with it, allows the buyer to
access the encryption key at the time of purchase. The buyer therefore can access the local
repository and fetch the data product for the intended use and contractually agreed upon
period.

2. Transfer of encrypted streaming data
Here the TEX infrastructure channels data streams using its distributed network that connects
data sources with subscribers to data streams that have been purchased on the marketplace.
Streams are activated and kept open under the same data access mechanisms as in the case
of batch data access. This use case is applied to a subset of biomedical data only, i.e. data from
wearable and monitoring devices, due to their semi-continuous nature as opposed to static
healthcare data (ex. electronic medical records) and educational data.

1. Secure Multi Party Computation
Local data assets, in this case, are accessed only by the distributed querying mechanisms
(SMPC) which retrieves precomputed query results to the user without exposing any of the

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 26

underlying data. The permissioning framework and correspondent implementation in the
Lynkeus blockchain is currently being designed for this data access modality. SMPC is also used
to share encryption keys for the transfer of encrypted batch data.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 27

4 Transaction management, the Streamr data infrastructure

Streamr is a project that aims to realise a decentralised worldwide network for real time data sharing.

In its current state, Streamr is not yet fully decentralised, but it’s already a Peer-to-Peer publish-

subscribe network for real time data transfer. It works with IoT devices, applications and anything with

an internet connection that can run the Streamr client software.

The Network is formed by a set of broker nodes. These nodes are intended to be installed on always-

on machines and connected to other nodes to route the traffic. The governance of the Network is

performed by a smart contract on the Ethereum blockchain. On this smart contract are saved all the

information regarding coordination, permissioning and access control of data streams. The actual

transfer of data happens off chain on the Streamr Network that benefits from the “network effect” as

with the increasing number of nodes, the scalability increases as well.

KRAKEN integrates Streamr in a way that the publishing process of data providers filters the subscribing

data consumers on the Streamr Network so that only the data consumers that are registered on the

KRAKEN marketplace and are eligible to subscribe to the stream are able to gain access to the data

streams.

This mechanism is summarized in the following image:

Figure 9 Transaction Management

4.1 Batch data

The Encrypted Batch Data Product use-case enables data transactions that allow sellers of data access

to give eligible uses access to their datasets whilst preventing any other actor outside of the

transaction, including the KRAKEN marketplace itself, from accessing the data. This is achieved by

exploiting the smart contracts that are implemented on a permissioned blockchain (Hyperledger

Fabric, as illustrate in section 2.3) and a Multi-Party Computation (MPC) network. Security features of

this mechanisms are explained more in detail in the Data Protection Layer section.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 28

Figure 10 Batch data transaction

The data flow begins with the data provider, who commences the Data Product publication workflow

in the marketplace UI by entering the relevant information about the Data Product and the policies

that dictate the eligibility of data consumers to access the data set. Once all of the relevant information

has been entered in the marketplace UI the data publication process commences. This process is

described below and begins with a data provider who has a data set stored in their own local storage

that needs to be published on the marketplace.

1. The Data provider provides the dataset to the KRAKEN frontend (a web page that is running at

that moment on the user’s laptop).

2. The KRAKEN frontend generates a random encryption key, encrypts the data sets with that key

and gives the data set back to the user. All this happens locally without any requests sent to

an external server.

3. The user is requested to upload this encrypted dataset on a cloud system and make it publicly

accessible with a link.

4. The user provides the link to the KRAKEN frontend.

5. The KRAKEN frontend splits the key previously generated in as many shares as the number of

MPC nodes in the MPC network. This operation prevents anybody without a sufficient number

of shares from reconstructing the original key.

6. The KRAKEN frontend sends all of the gathered information to the KRAKEN backend.

7. The KRAKEN backend stores the metadata of the Data Product, instructs the blockchain with

the new Data Product together with the policies and sends the key shares to the MPC network

nodes.

In the figure above, the data publication process described above is portrayed using blue arrows.

On completion of the process described above, the KRAKEN marketplace has a Data Product available

for access and purchase by data consumers. The Data Product access and purchase process is described

below.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 29

1. The Data Consumer browses the catalog of data products and chooses a Data Product.

2. The frontend locally generates a keypair and requests to the kraken backend the Data Product

access purchase by that specific Data Consumer including the keypair’s public key.

3. The Consumer’s identities and other Verifiable Credentials, ex. their institutional affiliation are

checked against the policies set up by the Data Provider on the blockchain.

4. Once the frontend receives the Data Consumer eligibility confirmation, the user performs the

payment (still exploiting the kraken frontend).

5. Once the backend is notified of the payment, it sends a request to the MPC network to provide

the Data Product corresponding dataset key encrypted with the Data Consumer public key.

6. The KRAKEN frontend receives the key and the dataset link, decrypts the key using the

keypair’s private key, with the obtained key it decrypts the datasets and provides it to the Data

Consumer.

In the Figure above, the data access and purchase process described above is portrayed using red
arrows.

On completion of the process described above, the data consumer has obtained the data set from the

data provider. Throughout the above-described process, the status of the transaction is tracked by the

backend, which updates the blockchain with every change of status. Specifically:

● When an eligible data consumer requests a Data Product, the transaction’s status on the

blockchain is updated with this information.

● When the user has performed the payment and the backend has received a notification from

the smart contract on the xDai network, a stable payments blockchain designed for fast and

inexpensive transactions (xdaichain.com) leveraged by TEX in their Streamr platform, that this

has been completed, the transaction’s status on the blockchain is updated.

● When an eligible Data Consumer that has already paid for access to the Data Product requests

the Data Product’s corresponding dataset, if the process of providing the link and decryption

key is successful, the transaction’s status on the blockchain is updated.

4.2 Biomedical streaming data

As described above, this use case applies only to a subset of biomedical data from wearable and

monitoring device in particular, in view of the fact that educational and other types of biomedical data

have inherently a static nature. The encrypted healthcare streaming data use case allows data

providers to give data consumers access to their data streams in a way that prevents any other actor,

including the KRAKEN marketplace itself, from having access to the Data Product. This is achieved by

exploiting the smart contracts that are run on the Data access permission blockchain, the Streamr

Network and xDai.

https://www.xdaichain.com/

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 30

Figure 11 Biomedical data transactions

The management of educational data is explained below in the context of the SSI and Verified

Credentialing (VC) because of its deep dependency from those systems, in light of the fact that

educational data are effectively treated as VCs.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 31

5 KRAKEN mobile application

5.1 Application architecture

The KRAKEN Platform will utilise one mobile app serving multiple purposes:

1 User creation and authentication with SSI

2 Simplified management of data products

3 Monitoring of data products uses

4 Exercising of user rights in compliance with the GDPR (ex. Right to be forgotten) and policies

management

The app’s architecture will therefore include an SSI SDK which is currently being extended with a REACT

native module to connect user facing functionalities to the underlying SSI components relying on the

Aries Framework (see below).

The mobile app has a particularly critical role in the implementation of the educational data use case,

in which the app serves as local storage for not only user identities (DID) but also of their verified

credentials, among which are data related to their academic grades and achievements as explained in

section 6. Contrary to the biomedical pilot where raw, individual data, weather in batch or streaming

forms, constitute the actual data product, in the educational pilot verifiable credentials are exchanged

for value, realizing a structurally different use case and corresponding architecture as explained in

section 6.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 32

6 The Data protection layer

6.1 SMPC internal architecture and privacy features

The SMPC security infrastructure has been discussed in depth in other deliverables. For further

information about the envisioned cryptographic mechanisms that enable a data receiver to obtain

privacy-preserving data-analytic results from data owners, and hence further information about the

features of MPC, we refer to Deliverable 2.4 (Kraken intermediate technical design). Specifically Sub-

Section 3.1.1 (State of the art SMPC software) within Section 3 (Cryptographic tools and analytic engine

specifications). Furthermore, also in Deliverable 4.1 (Progress report on cryptographic protocols for

privacy-preserving data markets and SSI systems) the usage and some properties of MPC are described.

Specifically, in the contribution of T4.2’s paper Privacy-preserving Analytics for Data Markets using

MPC (Sub-Section 3.1) as well as T4.3’s paper Multi-Party Revocation in Sovrin: Performance through

Distributed Trust (Sub-Section 4.2).

Here we explain two application of SMPC in the KRAKEN marketplace, namely the sharing of encryption

keys for the sharing of batch data and the distributed analytics use case, which is currently under

definition.

6.2 Protected encryption key sharing for batch data

One of the central issues that the KRAKEN marketplace has to solve evolves around end-to-end secure

sharing of data between data owners and data buyers. With the marketplace architecture we face

multiple issues that are normally not encountered when transferring data securely between two

communicating parties. The KRAKEN marketplace enables data owners to advertise their data on the

marketplace such that data buyers can browse the offerings and buy the data at any time. Here we

can already observe the first challenge for achieving end-to-end security: when using classical

approaches, the data owner is required to be online when the buyer triggers the data exchange

process. Indeed, if we consider a system where each buyer possesses a public key, the data owner only

knows the target for encrypting their data when the buyer actually buys the data.

With the marketplace in the middle, one could of course tightly integrate the marketplace in the data

exchange as trusted third party. In this case, however, the marketplace would have to manage the

data owner’s data in an unencrypted way. This would on one side impose substantial legal

requirements on the platform, but also drastically reduce the level of decentralization. From a security

point of view, the marketplace would be, indeed, an additional single point of failure. Compromising

the marketplace would then potentially give an adversary access to all data. When employing

techniques such as proxy re-encryption, we are able to secure the data from the marketplace. Yet

again, the seller would need to be online to generate proxy re-encryption keys whenever a buyer is

buying access to a dataset. Overall this means that either we have to put additional trust in the

marketplace or require the data owner to be almost always online.

To address these issues and challenges, the KRAKEN marketplace design follows a distinct approach to

provide both end-to-end security between seller and buyer while at the same time not requiring the

sender to be online for the data exchange. For the following discussion, recall the KEM-DEM paradigm.

For encrypting arbitrary data, one first samples a random key for a symmetric encryption scheme

which is used to the encrypt the actual data. The symmetric key is then encapsulated using public key

encryption scheme with respect to the receiver. Therefore, we can focus on the end-to-end secure

transport of the symmetric key. The encrypted data can be stored on any cloud storage service and

sharing of the URL can be managed by the KRAKEN marketplace.

We consider the following setup:

• The data owner which we call the sender and the data buyer called the receiver.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 33

• A set of at least three multi-party computation nodes run by different parties. One of these

nodes performs a slightly different tasks than the others and is called the aggregation node.

The idea is that the sender first performs a linear secret sharing of the key producing one share for
each MPC node. Then, the shares are individually encrypted using a linearly homomorphic proxy re-

encryption scheme for each of the nodes and sends the ciphertexts to the nodes. After this step the

participation of the sender is no longer necessary. When the receiver requests access to the data and

thus the key, the marketplace triggers the following process after verifying that the receiver satisfies

some requirements set by the sender: the marketplace sends the public key of the receiver to the MPC

nodes. The nodes re-encrypt their ciphertexts to the receiver. Then they send the ciphertexts to the

aggregation node, which recomputes the original symmetric key in the encrypted domain. The so

obtained ciphertext is forwarded to the receiver which is then able to decrypt the ciphertext.

Under the typical MPC assumption that at least one of the MPC nodes is not compromised, even if all

other nodes collude, they are unable to recover the original secret key from their shares. Additionally,

to give the receiver authenticity guarantees on the symmetric key, our design is accompanied by a

linearly homomorphic signature scheme. Besides combining the individual ciphertexts, the

aggregation nodes also combine accompanying signatures which allow the receiver to verify the

symmetric key. Figure below depicts the sequence diagram of this protocol.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 34

Figure 12: Secure secret keys sharing

6.2.1 Distributed analytics via SMPC

SMPC will be utilized to implement the third data access modality, i.e. the distribution of encrypted
queries over multiple datasets which will not be transferred but rather interrogated in this fashion to

retrieve query results to the user. The same underlying permissioning system will be utilized to support

data access control in this specific modality. User workflows are currently being designed for data

access buyers to select and instantiate queries, pick the target databases, execute payments and finally

retrieve the information they seek. Designs for all this integrated functionalities are being developed

and will be then implemented on time for the first platform release.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 35

6.2.2 Protection of streaming data

The healthcare streaming data encryption exploits the Streamr streams encryption mechanism

available when using encrypted streams. Specifically, this encryption is end-to-end. When a data

consumer requests access to a data stream, the request is sent to the data provider. This request

includes the Ethereum address of the data consumer and his public key. Once the data provider’s

publishing software has checked that the KRAKEN marketplace granted the permission to that specific

Ethereum address, it shares with him the encryption key of the stream’s messages (encrypting it with

his public key).

In this way the stream of messages sent from the data provider to the data consumer can be known

only by them. Even the KRAKEN marketplace or the Streamr network cannot access the data.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 36

7 Self-Sovereign Identity

7.1 User Authentication

As detailed extensively in D2.4, Self-Sovereign Identity systems allow individuals to control and

supervise how their digital identity is used or shared in a framework in which users can exist

independently from the services they access, as opposed to traditional digital identities administered

by centralized authorities like governments, corporations, or software platforms providers. As the next

step toward user-centric this realizes interoperability across systems and environments and true user

control.

As in all models of identity management, a digital identity requires identifiers: something that enables

a person to be discovered and identified and which ensure the user is who he/she claims to be. In self-

sovereign identity, identifiers do not need an intermediary. Rather, globally unique persistent

identifiers, not relying on a centralized registration authority, are generated and/or registered

cryptographically as decentralized identifier (DID). Most of DID methods use distributed ledger

technology (DLT) or some other form of decentralized network.

Users are at the same time able to generate credentials, as personally identifying information or facts

about themselves, including information asserted by other persons or entities. In such cases, those

entities are considered issuers, while the user (owner) becomes the holder of that credential which

may or may not relate to the subject of the credential (e.g. newborn baby birth certificate held by a

parent). The third role that an entity can play in a SSI system is the verifier, able to request a credential

from a user (holder) and will verify its validity.

An important pillar for the SSI is the Distributed Ledger Technology (DLT), typically built on a peer-to-

peer networks using consensus algorithms that ensure replication across the nodes of that network.

Together with DID and DLT, the third pillar on SSI are verifiable credentials, i.e. digital assertions made

by a user (or entity) containing a set of information about itself or another entity, that can include a

digital watermarking as a cryptographic verification of its content or a part of it (i.e. a claim).

A typical SSI architecture is presented in the following diagramFigure 13.

Figure 13: SSI architecture

The Verifiable Data Registry acts as a holder of the signatures of the issued credentials and supports

the creation and verification of decentralized identifiers. This registry is based on blockchain

technology.

A typical flow in these architectures is:

1. A user needs a credential and proceeds to ask the issuer for it.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 37

2. The issuer requests the user to be identified and exchanges its DID

3. The issuer generates a credential for this DID, based on the user´s information, and record the

signature of the credential generated in the blockchain.

4. Once the user receives the credential, she/he is able to present this credential to the verifier.

5. Verifier checks blockchain in order to validate the signature of the credential, to guarantees

the authenticity of the data, without actually storing any personal data on the blockchain

7.1.1 The KRAKEN approach

KRAKEN leverages the above-mentioned approach in a way that is agnostic to the underlying

blockchain technology giving the consortium freedom in developing a solution that will not be tied to

a specific ledger implementation and consequently it will be easily integrated/adapted with any

service.

The holder will use a mobile-based application, the KRAKEN app mentioned in section 4, to interact

with the issuer and service provider, and to store the credentials, in order to present them in any

service that requires them. This application contains an interface to connect with a credentials backup

service in charge of making a backup of the cryptographic material used in the SSI. This way, if the

holder needs to use another mobile device (or multiple) or in case their devices have been stolen,

she/he will be able to restore all material needed to replicate the SSI.

As it was envisaged in D.7.2, KRAKEN would use eIDAS (electronic IDentification, Authentication and

trust Services) for electronic identification and trust services in the European Single Market for the

purpose of identifying the holder and will add this information as part of the generation of the

Verifiable Credential. The Legal Identity Manager (LIM) is, on the other hand, the issuer that generates

and sign this identity on the basis of the eIDAS information, provided by the holders through their

national authentication services.

All this strictly aligns KRAKEN with the European Self-Sovereign Identity Framework (ESSIF:

https://ec.europa.eu/cefdigital/wiki/pages/viewpage.action?pageId=262505734) .

7.2 Educational data exchange through Verifiable Credentials

These functions and respective integration come together in the context of KRAKEN’s educational pilot

in which users can export their academic information from a university system and provide access to

various stakeholders such as other academic institutions, recruiters or employers. It's very important

to notice here the difference with the biomedical pilot in which data are changed in either batch or

streaming forms, while educational data are encoded and exchanged as verified credentials. The

KRAKEN marketplace has been, in this view, directly integrated in the Gratz university information

system. Key to this integration is the Hyperledger Aries framework in which every stakeholder operates

an Aries agent including the university and the student provided with a wallet to store DID and VCs. In

the future, other stakeholders like human resources agencies will be added to the demonstrator.

Agents interact with the information systems either by using REST APIs, or interfacing directly. In the

current demonstrator, the university uses a central API service for all kinds of university-internal data

exchanges like access to the student-information-system, library, and room reservation system. Since

the agent used by the KRAKEN pilot is also integrated into the university API, the KRAKEN credential

exporter frontend communicates with the agent using his API. Thus, the frontend needs only a single

point of contract at the university for access to student data as well as communication with other

Aries/KRAKEN agents. Additionally, this layer takes care of access control and ensures that students

can only export their own data, which furthermore ensures the student’s consent at all times.

To communicate with other agents, an Aries agent implements various communication protocols

which use the student’s DIDs to establish a connection with the student’s KRAKEN app (typically a

mobile wallet). To resolve the involved DIDs, the agent requires access to the corresponding DL, which

https://ec.europa.eu/cefdigital/wiki/pages/viewpage.action?pageId=262505734

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 38

is realized by using DIF’s sidetree protocol. After this step, the university and the student agent

establish a direct communication using REST APIs. This connection is then used in the background to

issue credentials directly to the student’s wallet.

Figure 14 Wallet and agent in the educational pilot

7.2.1 Education data exchange, user workflow

To facilitate the integration of the KRAKEN system multiple modules, which have been discussed in

detail in D2.2, have been developed to support the communication between issuers (universities) and

holders (students), as well as the issuing and storing of VCs using the Hyperledger Aries framework.

These also facilitate the integration of the educational data domain into the KRAKEN ecosystem hinging

on the KRAKEN app as the main interface to the marketplace. Data stored by it can indeed be directly

used within the marketplace. Education data are exported into the student’s (mobile) wallet to then

be exposed on the marketplace as downloadable assets or targets of distributed analytics with SMPC

as the system takes care of the encryption of the data, so that no one except for the qualified buyer

has access to the plaintext, not even the marketplace itself.

The diagram below gives a high-level overview of the dataflow of the analytical data product use case.

Figure 15 Educational Pilot Architecture

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 39

7.2.2 Application-level integration

Key to this architecture is a connector component which interacts with the (existing) university systems

on one end and with the KRAKEN marketplace on the other and consists of a web interface which

students can use to connect their SSI/KRAKEN app (see below) and perform a decentralized identifier

(DID) handshake. Students use their university account, eIDAS login, or other E-ID (like ID Austria) to

first login. Once the DID connection is established, students can request that their course certificates

and graduation diplomas are issued in the form of VCs. The issuing is performed by the backend of the

education connector and issued credentials are directly sent to the student wallet using the respective

DID communication protocol. This means there is no need to scan multiple QR codes for each

credential.

Since the process can only be initiated by the student themselves and requires their presence in the

interaction process at all times, the explicit consent of the student to the data export is ensured. This

is reinforced by an informative consent screen during the authentication process. Additionally, data is

only transferred directly to the student’s wallet and no third parties have access to the data at this

stage.

Figure 16 The connector after a student connected their KRAKEN wallet

Figure 17 The Connector before a student exports a diploma credential to their wallet

After exporting their credentials into the KRAKEN app, students can use the credentials in a self-

sovereign way without further involvement of the university.

In addition to directly show credential to verifiers, students can use them to create data products on

the KRAKEN marketplace. Doing so enables buyers from various fields and industries to buy access to

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 40

these credentials or a set of credentials or use them in statistical computations -- with the student’s

consent and with the marketplace taking care of rewards and payment processing.

To do so, a student uses the KRAKEN app to authenticate and prove their affiliation to the university.

Afterwards they create a data product by providing some metadata about the credential, payment

information, and the credential data itself. Further, the student defines access policies for their data

like who can buy the data or in what computations the data can be used. The marketplace app takes

care of the rest, encrypting the data and uploading it to a cloud storage.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 41

8 Outstanding issues in decentralization

In a strictly decentralised system, correct functioning does not depend on any single entity (person or

organisation) and operations, therefore, cannot be corrupted by targeting that entity. Attackers are

forced to compromise the majority of the nodes in the entire network to enact malicious intents. In

KRAKEN there are two decentralized systems: the Lynkeus Blockchain and the Multi Party Computation

(MPC) network.

In the Lynkeus blockchain, the process of the eligibility check exploits smart contracts in the

Hyperledger Fabric network, decentralizing the data access permission process by matching sellers

policies with buyers intended uses and access criteria.

At the same time, the verification of the validity of Verified Credentials which is a key input in the
permissioning process exploits a Self-Sovereign Identity (SSI) agent, that in the current KRAKEN

architecture is only a single agent. This means that the corruption of this agent would invalidate the

eligibility check as the blockchain would not able to know if the VCs that it receives are valid or not.

Let’s consider for example the situation where a data provider publishes a Data Product and a data

consumer that wants to buy access to that Data Product doesn’t have the required VCs to be eligible

for access. If the data consumer is able to corrupt the SSI agent to make it work in a way that it

considers his or her VCs valid, the data consumer becomes eligible to buy the Data Product. This

situation, provoked by the centralisation of the SSI agent, invalidates the decentralization of the

blockchain.

The way data consumers get access to the Data Product, in the batch and distributed analytics case,

happens through the SMPC network and the permission to access the data is granted by the

permissioning layer (Lynkeus blockchain). This permission is retrieved by the backend from the

blockchain network. Once the backend checks that a Data Consumer is eligible for a Data Product, it

requests the SMPC network to provide the dataset. The SMPC network receives information from the

backend that cannot be proven to come from the blockchain.

Let’s consider again the situation where a data provider publishes a Data Product and a data consumer

that wants to purchase access to that Data Product doesn’t have the right VCs to be eligible to access

it. If the data consumer is able to corrupt the backend to make it work in a way that it communicates

to the MPC network that he is eligible, the MPC network will behave normally and provide him with

the dataset (or more accurately, the analytics results). This situation, provoked by the centralisation of

the backend, invalidates the decentralization of the MPC network.

An analogue situation can be seen in the case of payment. The payment is checked on the payment

blockchain by the backend, but the Lynkeus blockchain is not able to verify that this information is

actually coming from the payment blockchain and needs to trust the backend on its validity.

8.1.1 Possible architecture update

A solution to inhibit all these centralisation points is the creation of a new network that would be an

extension of the Lynkeus blockchain. A node of this new network would be composed of a node of the

Lynkeus blockchain, an SSI agent, a node of the MPC network and a watcher of the payment

blockchain.

The connection of an SSI agent to every node of the blockchain gives the capability to the blockchain

nodes to be independent in the verification of the validity of the VCs. In this way, even if an attacker is

able to corrupt the SSI agent connected to the backend, the nodes of the blockchain, that can

independently check the validity of the VCs, would not validate the transaction and the attacker would

not succeed.

The same principle applies to the payment blockchain watcher.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 42

In the case of the MPC network, the MPC nodes would still be connected to each other, but in this

case, the updates regarding the eligibility of buyers to download certain datasets comes directly from

the blockchain (more specifically comes from the trusted node of the blockchain belonging to the same

organisation of the MPC node). In this setting, every node of the MPC network is independent of the

verification of the validity of the transactions. So even if the attacker is able to corrupt the backend or

a node of the MPC network, the other nodes would not validate the new transaction.

The entire schema is summarised in the following image:

Figure 18 Fully decentralized design

This new setting is not centralisation-free. For example the availability of the platform depends still on

the backend, but the integrity of the transactions is secured by decentralisation.

Search solution is currently under analysis in terms of their feasibility within the project and actual

value in terms of security risk mitigation.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 43

9 Conclusion

The Kraken marketplace architecture is in a very advanced stage of definition as main infrastructural

components are currently being developed and integrated in view of the first release of the platform

scheduled for July 2021 (D5.5).

All key integration aspects have been defined despite high levels of complexity of the underlying use

cases, encompassing issues of ethics and regulations, user experience and market requirements, along

with very different levels of technological maturity in each of the integrated components. As, for

instance, TEX’s Streamr network is in public availability, the Aries Framework selected by Atos to

implement the SSI framework, it’s still in experimental stage in some key areas such as the support of

mobile solutions.

As more architectural details are established, especially for the mobile application and the integration

between SMPC and the marketplace, the design will turn its focus to remaining issues of centralization

at the intersection between SSI and the permissioning layer.

In final version of the architecture (D5.4) we expect to deliver a design that is, on one hand, fully

decentralized and on the other able to implement the highest level of privacy and data security,

therefore enforcing compliance in all its operations. Such assumption will be tested through a

thorough legal analysis in the form of DPIA (data privacy impact assessment) or a similar type of legal

and ethical assessment in strict collaboration with WP7.

D5.3 Initial KRAKEN marketplace integrated architecture document

©KRAKEN Consortium 44

www.krakenh2020.eu

This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant

agreement No 871473

@KrakenH2020

Kraken H2020

