Privacy-Preserving Precision Medicine

Liina Kamm Senior researcher @ Cybernetica

Secure Multy-party Computation – Sharemind MPC

Trusted Execution Environment – Sharemind HI

CLIENT APPLICATION

Sharemind HI client library

SHAREMIND HI APPLICATION SERVER

Implementing Privacy-Preserving Genotype Analysis with Consideration for Population Stratification

Andre Ostrak, Jaak Randmets, Ville Sokk, Sven Laur, Liina Kamm MDPI Cryptography (Special Issue Secure Multiparty Computation)

https://www.mdpi.com/2410-387X/5/3/21

This work has been supported by the EU H2020-SU-ICT-03-2018 Project No. 830929 CyberSec4Europe (cybersec4europe.eu).

Genome Wide Association Studies (GWAS)

- Genotype data presented as single nucleotide polymorphisms (SNPs)
- Phenotype data
- Case and control groups

Data Quantity and Privacy

- Traits can be affected by multiple genetic locations
- Large volumes of heterogenous data are needed
- Privacy becomes an issue when sharing data between biobanks

Population Stratification

- Geographic isolation of subpopulations during several generations
- The lactase gene (LCT) was shown to be connected to height in a European American cohort with significance $p < 10^{-6}$
- Both height and the LCT gene have wide variations across populations in Europe
- The spurious association was reduced, when individuals were rematched on the basis on European ancestry

Privacy-Preserving GWAS

- Extract-transform-load (ETL) and contingency table computation
- Hypothesis testing
- Correction for stratification
- Which algorithms to choose?

Correcting for Stratification Using PCA

Algorithm 1: Principal component analysis (PCA)

- Top eigenvectors of the sample kinship matrix
- Eigendecomposition is used to infer population stratification
- Its results are used to adjust the genotypes and phenotypes for stratification
- Cochran-Armitage test for trend used on the adjusted results

Algorithm 2: FastPCA

 Uses recent advances in random matrix theory to reduce the computational effort in finding the top eigenvectors of the kinship matrix

Correcting for Stratification

Algorithm 3: Genomic control

- Cochran-Armitage trend statistic for each SNP
- Robust estimation for the variance inflation factor (median of trend statistics)
- Divide the trend statistics with the estimation

Algorithm 4: EMMAX

- Linear mixed effect model for each SNP with the SNP as the fixed effect
- Approximate the random coefficients giving the maximum likelihood estimates for the variance component factors
- Find estimates for the regression coefficients
- Compute the t statistics

What do we need?

- Database operations (oblivious join, data aggregation)
- Floating-point data type and operations (actually fixed-point is sufficient, with some adjustment)
 - For floating-point numbers, addition is especially slow
- Very many parallel matrix multiplications
- Natural logarithm

Sharemind MPC

	Sharemind MPC		
Secure storage	additive secret sharing of each individual value between three computing parties		
Secure computing	Honest-but-curious MPC		
Algorithm implementation language	SecreC 2		

Infrastructure:

- 3 computers with Intel Xeon E5-2640 processors
- 128 GB of memory
- dedicated 10 Gb/s connections

Sharemind Hardware Isolation (HI)

	Sharemind MPC	Sharemind HI	
Secure storage	additive secret sharing of each individual value between three computing parties	Full database encrypted with AES	
Secure computing	Honest-but-curious MPC	Intel® Software Guard eXtensions (SGX) Trusted Execution Environment	
Algorithm implementation language	SecreC 2	C++ with Sharemind HI SDK that enable large database processing and access control in enclaves	

Performance results (seconds)

Experiment	Patient count	MPC	HI	If HI was 100x slower
PCA	5000 SNPs 200 donors	5358.43 s (89.3 minutes)	2.42 s	242 s
Genomic Control	300000 SNPs 200 donors	2096.5 s (35 minutes)	15.11 s (reading input data)	~20 s (reading input data)
EMMAX	5000 SNPs 200 donors	87400 s (24.3 hours)	7.14 s	714 s

Conclusions

- It is possible to perform the whole GWAS process in the privacy-preserving domain
- Optimisations from FastPCA
- Feasibility depends on the requirements of the study.

Thank you!

CyberneticaAS

© cybernetica_ee

in Cybernetica

liina.kamm@cyber.ee

