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Abstract. Public-key encryption (PKE) schemes or key-encapsulation
mechanisms (KEMs) are fundamental cryptographic building blocks to
realize secure communication protocols. There are several known trans-
formations that generically turn weakly secure schemes into strongly (i.e.,
IND-CCA) secure ones. While most of these transformations require the
weakly secure scheme to provide perfect correctness, Hofheinz, Hövel-
manns, and Kiltz (HHK) (TCC 2017) have recently shown that variants
of the Fujisaki-Okamoto (FO) transform can work with schemes that
have negligible correctness error in the (quantum) random oracle model
(QROM). Many recent schemes in the NIST post-quantum competition
(PQC) use variants of these transformations. Some of their CPA-secure
versions even have a non-negligible correctness error and so the tech-
niques of HHK cannot be applied.
In this work, we study the setting of generically transforming PKE
schemes with potentially large, i.e., non-negligible, correctness error to
ones having negligible correctness error. While there have been previ-
ous treatments in an asymptotic setting by Dwork, Naor, and Reingold
(EUROCRYPT 2004), our goal is to come up with practically efficient
compilers in a concrete setting and apply them in two different contexts.
Firstly, we show how to generically transform weakly secure determinis-
tic or randomized PKEs into CCA-secure KEMs in the (Q)ROM using
variants of HHK. This applies to essentially all candidates to the NIST
PQC based on lattices and codes with non-negligible error for which we
provide an extensive analysis. We thereby show that it improves some
of the code-based candidates. Secondly, we study puncturable KEMs
in terms of the Bloom Filter KEM (BFKEM) proposed by Derler et al.
(EUROCRYPT 2018) which inherently have a non-negligible correctness
error. BFKEMs are a building block to construct fully forward-secret
zero round-trip time (0-RTT) key-exchange protocols. In particular, we
show the first approach towards post-quantum secure BFKEMs generi-
cally from lattices and codes by applying our techniques to identity-based
encryption (IBE) schemes with (non-)negligible correctness error.
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1 Introduction

Public-key encryption (PKE) schemes or key-encapsulation mechanisms (KEMs)
are fundamental cryptographic building blocks to realize secure communica-
tion protocols. The security property considered standard nowadays is security
against chosen-ciphertext attacks (IND-CCA security). This is important to avoid
pitfalls and attacks in the practical deployments of such schemes, e.g., padding-
oracle attacks as demonstrated by Bleichenbacher [Ble98] and still showing up
very frequently [JSS12, ASS+16, BSY18, RGG+19]. Also, for key exchange
protocols that achieve the desirable forward-secrecy property, formal analysis
shows that security against active attacks is required (cf. [JKSS12, KPW13,
DFGS15, PST20]). This equally holds for recent proposals for fully forward-
secret zero round-trip time (0-RTT) key-exchange protocols from puncturable
KEMs [GHJL17, DJSS18, DGJ+18] and even for ephemeral KEM keys for a
post-quantum secure TLS handshake without signatures [SSW20].

In the literature, various different ways of obtaining CCA security generically
from weaker encryption schemes providing only chosen-plaintext (IND-CPA) or
one-way (OW-CPA) security are known. These can be in the standard model us-
ing the double-encryption paradigm due to Naor and Yung [NY90], the compiler
from selectively secure identity-based encryption (IBE) due to Canetti, Halevi
and Katz [CHK04], or the more recent works due to Koppula and Waters [KW19]
based on so called hinting pseudo-random generators and Hohenberger, Koppula,
and Waters [HKW20] from injective trapdoor functions. In the random oracle
model (ROM), CCA security can be generically obtained via the well-known
and widely-used Fujisaki-Okamoto (FO) transform [FO99, FO13] yielding par-
ticularly practical efficiency.

Perfect correctness and (non-)negligible correctness error. A property
common to many compilers is the requirement for the underlying encryption
schemes to provide perfect correctness, i.e., there are no valid ciphertexts where
the decryption algorithm fails when used with honestly generated keys. Recently,
Hofheinz, Hövelmanns, and Kiltz (HHK) [HHK17a] investigated different vari-
ants of the FO transform also in a setting where the underlying encryption
scheme has non-perfect correctness and in particular decryption errors may oc-
cur with a negligible probability in the security parameter. This is interesting
since many PKE schemes or KEMs based on conjectured quantum-safe assump-
tions and in particular assumptions on lattices and codes do not provide per-
fect correctness. Even worse, some of the candidates submitted to the NIST
post-quantum competition (PQC) suffer from a non-negligible correctness er-
ror and so the FO transforms of HHK cannot be applied. Ad-hoc approaches
to overcome this problem that are usually chosen by existing constructions in
practice — if the problem is considered at all — is to increase the parame-
ters to obtain a suitably small decryption error, applying an error correcting
code on top or implementing more complex decoders. In practice, these ad-hoc
methods come with drawbacks. Notably, LAC, which is a Learning With Errors
(LWE) based IND-CCA secure KEM in the 2nd round of the NIST PQC that
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applies an error correcting code, is susceptible to a key-recovery attack recently
proposed by Guo et al. [GJY19]. Also, code-based schemes have a history of
attacks [GJS16, SSPB19, FHS+17] due to decoding errors. Recently, Bindel and
Schanck [BS20] proposed a failure boosting attack for lattice-based schemes with
a non-zero correctness error. For some code-based schemes, the analysis of the
decoding error is a non-trivial task as it specifically depends on the decoder.
For instance, the analysis of BIKE’s decoder, another 2nd round NIST PQC
candidate, has recently been updated [SV19].

Consequently, it would be interesting to have rigorous and simple approaches
to remove decryption errors (to a certain degree) from PKE schemes and KEMs.
Immunizing encryption schemes. The study of “immunizing” encryp-
tion schemes from decryption errors is not new. Goldreich, Goldwasser, and
Halevi [GGH97] studied the reduction or removal of decryption errors in the
Ajtai-Dwork encryption scheme as well as Howgrave-Graham et al. [HNP+03]
in context of NTRU. The first comprehensive and formal treatment has been
given by Dwork, Naor, and Reingold [DNR04] who study different amplification
techniques in the standard and random oracle model to achieve non-malleable
(IND-CCA secure) schemes. One very intuitive compiler is the direct product
compiler Enc⊗` which encrypts a messageM under a PKE Π = (KGen,Enc,Dec)
with a certain decryption error δ under ` independent public keys from KGen,
i.e,. pk′ := (pk1, . . . , pk`) as Enc′(pk′,M) := (Enc(pk1,M), . . . ,Enc(pk`,M)).
Dec′, given C ′ = (C1, . . . , C`) tries to decrypt Ci, 1 ≤ i ≤ `, and returns the
result of a majority vote among all decrypted messages, yielding an encryption
scheme with some error δ′ ≤ δ. Their asymptotic analysis, however, and
limitation to PKEs with a binary message space does not make it immediate
what this would mean in a concrete setting and in particular how to choose `
for practically interesting values of δ and δ′. For turning a so-obtained amplified
scheme with negligible correctness error into a CCA-secure one in the ROM,
they provide a transform using similar ideas, but more involved than the FO
transform. Bitansky and Vaikuntanathan [BV17] go a step further and turn
encryption schemes with a correctness error into perfectly correct ones, whereas
they even consider getting completely rid of bad keys (if they exist) and, thus,
completely immunize encryption schemes. They build upon the direct product
compiler of Dwork et al. and then apply reverse randomization [Nao90] and
Nisan-Wigderson style derandomization [NW94]. Thereby, they partition the
randomness space into good and bad randomness, and ensure that only good
randomness is used for encryption and key generation.

Our goals. In this work, we are specifically interested in transformations that
lift weaker schemes with non-negligible correctness error into CCA-secure ones
with negligible error. Thereby, our focus is on modular ways of achieving this
and can be seen as a concrete treatment of ideas that have also be discussed by
Dwork et al. [DNR04], who, however, treat their approaches in an asymptotic
setting only. We show that the direct product compiler can be used with
variants of the standard FO transform considered by HHK [HHK17a] (in the
ROM) as well as Bindel et al. [BHH+19] and Jiang et al. [JZM19] (in the
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quantum ROM (QROM) [BDF+11]). They are used by many candidates of the
NIST PQC, when starting from PKE schemes having non-negligible correctness
error generically. As we are particularly interested in practical compilers in a
concrete setting to obtain CCA security for KEMs in the (Q)ROM, we analyze
the concrete overhead of this compiler and its use with widely used variants
of the transforms from HHK. Moreover, we provide a rigorous treatment of
non-black-box applications of these ideas and show that they yield better
concrete results than the direct application of the direct product compiler.
Importantly, it gives a generic way to deal with the error from weaker schemes
(e.g., IND-CPA secure ones with non-negligible error) which are easier to design.
An interesting question that we will study is how does increasing from one to
` ciphertexts compare to increasing the parameters at comparable resulting
decryption errors for existing round-two submissions in the NIST PQC. As it
turns out, our approach performs well in context of code-based schemes but
gives less advantage for lattice-based schemes.

We also study our approach beyond conventional PKE schemes and KEMs.
In particular, a class of KEMs that have recently found interest especially in con-
text of full forward-secrecy for zero round-trip time (0-RTT) key-exchange (KE)
protocols are so-called puncturable KEMs [GM15, GHJL17, DJSS18, SSS+20]
and, in particular, Bloom Filter KEMs (BFKEMs) [DJSS18, DGJ+18]. BFKEMs
schemes are CCA-secure KEMs that inherently have non-negligible correctness
error. Interestingly, however, the non-negligible correctness error comes from
the Bloom filter layer and the underlying IBE scheme (specifically, the Boneh-
Franklin [BF01] instantiation in [DJSS18]) is required to provide perfect correct-
ness. Thus, as all post-quantum IBEs have at least negligible correctness error,
there are no known post-quantum BFKEMs.

1.1 Contribution

Our contributions on a more technical level can be summarized as follows:

Generic transform. We revisit the ideas of the direct product compiler of
Dwork et al. [DNR04] (dubbed Cp,r and Cp,d for randomized and deterministic
PKEs, respectively) in the context of the modular framework of HHK [HHK17a].
In particular, we present a generic transform dubbed T? that, given any random-
ized PKE scheme with non-negligible correctness error, produces a derandomized
PKE scheme with negligible correctness error. We analyze the transform both in
the ROM and QROM and give a tight reduction in the ROM and compare it to
a generic application of the direct product compiler. The transform naturally fits
into the modular framework of HHK [HHK17a], and, thus, by applying the U 6⊥

transform, gives rise to an IND-CCA-secure KEM. For the analysis in the QROM,
we follow the work of Bindel et al. [BHH+19]. We show that the T? transform
also fits into their framework. Hence, given the additional injectivity assumption,
we also obtain a tight proof for U6⊥. But even if this assumption does not hold,
the non-tight proofs of Jiang et al. [JZM19] and Hövelmanns et al. [HKSU20]
still apply. Compared to the analysis of the T transform that is used in the
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Theorem 7 U6⊥
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Cp,r

Corollary 1
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[HHK17a] Thm. 3.6

Fig. 1. Overview of the transformations in the ROM with the results related to T?

highlighted in blue. rPKE denotes a randomized PKE. dPKE denotes a deterministic
PKE. The prefix nn indicates encryption schemes with non-negligible correctness error.

nn-rPKE
IND-CPA

dPKE
OW-CPA

KEM
IND-CCA

nn-rPKE
ε-injective

dPKE
FFC

rPKE
IND-CPA

nn-rPKE
DS + IND-CPA
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OW-CPA

T?

Theorem 8

T?

Lemma 2

U 6⊥

[JZM19] Thm. 6

U6⊥

[KSS+20] Thm. 4.6

T [BHH+19] Thm. 1

Cp,r

Corollary 1

Corollary 1

Cp,d/C?
p,d

U6⊥m ◦ T?

[HKSU20] Thm. 3.2†

Fig. 2. Overview of the transformations in the QROM using the notation from Figure 1.
A dashed arrow denotes a non-tight reduction. DS denotes disjoint simulatability.
†: Obtained by applying the modifications from Theorems 7 and 8 to [HKSU20, Thm
3.2].

modular frameworks, our reductions lose a factor of `, i.e., the number of paral-
lel ciphertexts required to reach a negligible correctness error, in the ROM and
a factor of `2 in the QROM. For concrete schemes, this number is small (e.g.,
≤ 5) and, thus, does not impose a significant loss. An overview of the trans-
formations and how our transform fits into the modular frameworks is given in
Figure 1 (ROM) and Figure 2 (QROM). Furthermore, using ideas similar to T?,
we discuss a modified version of the deterministic direct product compiler Cp,d

which we denote by C?p,d, that compared to the original one allows to reduce the
number of parallel repetitions needed to achieve negligible correctness error.
Evaluation. We evaluate T? based on its application to code- and lattice-based
second-round candidates in the NIST PQC. In particular, we focus on schemes
that offer IND-CPA secure versions with non-negligible correctness error such
as ROLLO [ABD+19], BIKE [ABB+19], and Round5 [GZB+19]. We compare
their IND-CCA variants with our transform applied to the IND-CPA schemes. In
particular, for the code-based schemes such as ROLLO we can observe improve-
ments in the combined size of public keys and ciphertexts, a metric important
when used in protocols such as TLS, as well as its runtime efficiency. We also ar-
gue the ease of implementing our so-obtained schemes which can rely on simpler
decoders. For lattice-based constructions, we find that the use of the transform
results in an increase in the sum of ciphertext and public-key size of 30% even in
the best case scenario, i.e., for an IND-CPA version of KEM Round5 [GZB+19].
Nevertheless, it offers easier constant-time implementations and the opportunity

5



of decreasing the correctness error without changing the underlying parameter
set and, thus, the possibility to focus on analyzing and implementing one pa-
rameter set for both, IND-CPA and IND-CCA security.

Bloom Filter KEMs. Finally, we revisit puncturable KEMs from Bloom fil-
ter KEMs (BFKEMs) [DJSS18, DGJ+18], a recent primitive to realize 0-RTT
key exchange protocols with full forward-secrecy [GHJL17]. Currently, it is un-
clear how to instantiate BFKEMs generically from IBE and, in particular, from
conjectured post-quantum assumptions due to the correctness error of the re-
spective IBE schemes. We show that one can construct BFKEMs generically
from any IBE and even base it upon IBEs with a (non-)negligible correctness
error. Consequently, our results allow BFKEMs to be instantiated from lattice-
and code-based IBEs and, thereby, we obtain candidates for post-quantum CCA-
secure BFKEMs.

On the progress in the NIST PQC. We note that our work has been done
during the second round of the NIST PQC. Meanwhile, NIST has announced
the third-round candidates and from the schemes that are suitable for our com-
pilers, BIKE [ABB+19] and FrodoKEM [NAB+19] still remain as alternate can-
didates in the competition. Moreover, we concretely analyze the submissions to
the second round and want to note that meanwhile there are additional results
on the cryptanalysis of some relevant second round schemes, i.e., for ROLLO
in [BBC+20] as well as for LEDAcrypt in [APRS20]. These results might require
a change in the parameters compared to the versions that we use in this work.

2 Preliminaries

Notation. For n ∈ N, let [n] := {1, . . . , n}, and let λ ∈ N be the security
parameter. For a finite set S, we denote by s←$S the process of sampling
s uniformly from S. For an algorithm A, let y ← A(λ, x) be the process of
running A on input (λ, x) with access to uniformly random coins and assigning
the result to y (we may assume that all algorithms take λ as input). To make the
random coins r explicit, we write A(x; r). We say an algorithm A is probabilistic
polynomial time (PPT) if the running time of A is polynomial in λ. A function
f is negligible if its absolute value is smaller than the inverse of any polynomial,
i.e., if ∀c ∃k0 s.t. ∀λ ≥ k0 : |f(λ)| < 1/λc.

2.1 Public-Key Encryption and Key-Encapsulation Mechanisms

Public-key encryption. A public-key encryption (PKE) scheme Π with mes-
sage spaceM consists of the three PPT algorithms (KGen,Enc,Dec): KGen(λ), on
input security parameter λ, outputs public and secret keys (pk, sk). Enc(pk,M),
on input pk and message M ∈M, outputs a ciphertext C. Dec(sk, C), on input
sk and C, outputs M ∈M∪{⊥}. We may assume that pk is implicitly available
in Dec.
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Exp. Exppke-ind-cpa
Π,A (λ)

(pk, sk)← KGen(λ)

(M0,M1)← A(pk)

b←$ {0, 1}
C∗ ← Enc(pk,Mb)

b′ ← A(C∗)

if b = b′ then return 1
else return 0

Exp. Exppke-ow-cpa
Π,A (λ)

(pk, sk)← KGen(λ)

M ←$M
C∗ ← Enc(pk,M)

M ′ ← A(pk, C∗)

if M = M ′ then return
1 else return 0

Exp. Exppke-ow-pca
Π,A (λ)

(pk, sk)← KGen(λ)

M ←$M
C∗ ← Enc(pk,M)

M ′ ← APco(·,·)(pk, C∗)

if M = M ′ then return 1
else return 0

Fig. 3. PKE-x-y security with x ∈ {OW, IND}, y ∈ {CPA,PCA} for Π.

Correctness. We recall the definition of δ-correctness of [HHK17a]. A PKE Π
is δ-correct if

E

[
max
M∈M

Pr[c← Enc(pk,M) : Dec(sk, C) 6=M ]

]
≤ δ,

where the expected value is taken over all (pk, sk)← KGen(λ).
PKE-IND-CPA, PKE-OW-CPA, and PKE-OW-PCA security. We say
a PKE Π is PKE-IND-CPA-secure if and only if any PPT adversary A has
only negligible advantage in the following security experiment. First, A gets an
honestly generated public key pk. A outputs equal-length messages (M0,M1)
and, in return, gets C∗b ← Enc(pk,Mb), for b←$ {0, 1}. Eventually, A outputs a
guess b′. If b = b′, then the experiment outputs 1. For PKE-OW-CPA security,
A does not receive a ciphertext for A-chosen messages, but only a ciphertext
C∗ ← Enc(pk,M) forM ←$M and outputsM ′; ifM =M ′, then the experiment
outputs 1. For PKE-OW-PCA security, A additionally has access to a plaintext
checking oracle Pco(M,C) returning 1 if M = Dec(sk, C) and 0 otherwise.

Definition 1. For any PPT adversary A the advantage function

Advpke-ind-cpa
Π,A (λ) :=

∣∣∣∣Pr[Exppke-ind-cpa
Π,A (λ) = 1

]
− 1

2

∣∣∣∣,
is negligible in λ, where the experiment Exppke-ind-cpa

Π,A (λ) is given in Figure 3 and
Π is a PKE as above.

Definition 2. For any PPT adversary A, and y ∈ {CPA,PCA} the advantage
function

Exppke-OW-y
Π,A (λ) := Pr

[
Exppke-OW-y

Π,A (λ) = 1
]
,

is negligible in λ, where the experiments Exppke-ow-cpa
Π,A (λ) and Exppke-ow-pca

Π,A (λ) are
given in Figure 3 and Π is a PKE as above.

We recall a well known lemma below:

Lemma 1. For any adversary B there exists an adversary A with the same
running time as that of B such that

Advpke-ow-cpa
Π,B (λ) ≤ Advpke-ind-cpa

Π,A (λ) +
1

|M|
.
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Exp. Exppke-ffc
Π,A (λ)

(pk, sk)← KGen(λ)

L← A(pk)

if exists C ∈ L with M ∈ M such that Enc(pk,M) = C and Dec(sk, C) 6= M
then return 1 else return 0

Fig. 4. Finding-failing-ciphertext experiment for Π.

We note that Lemma 1 equivalently holds for the `-IND-CPA notion below.
Multi-challenge setting. We recall some basic observations from [BBM00]
regarding the multi-challenge security of PKE schemes. In particular, for our
construction we need the relation between OW-CPA/IND-CPA security in the
conventional single-challenge and single-user setting and n-OW-CPA/n-IND-CPA
respectively, which represents the multi-challenge and multi-user setting. In par-
ticular, latter means that the adversary is allowed to obtain multiple challenges
under multiple different public keys.

Theorem 1 (Th. 4.1 [BBM00]). Let Π = (KGen,Enc,Dec) be a PKE scheme
that provides x-CPA security with x ∈ {OW, IND}. Then, it holds that:

Advpke-x-cpa
Π,A (λ) ≥ 1

q · n
· Advn-pke-x-cpa

Π,A (λ),

where n is the number of public keys and A makes at most q queries to any of
its n challenge oracles.

Although the loss imposed by the reduction in Theorem 1 can be significant
when used in a general multi-challenge and multi-user setting, in our application
we only have cases where n = 1 and small q (q = 5 at most), or vice versa (i.e.,
q = 1 and n = 5 at most) thus tightness in a concrete setting is preserved.
Finding failing ciphertexts and injectivity. For the QROM security proof
we will need the following two definitions from [BHH+19].

Definition 3 (ε-injectivity). A PKE Π is called ε-injective if

– Π is deterministic and

Pr[(pk, sk)← KGen(λ) :M 7→ Enc(pk,M) is not injective ] ≤ ε.

– Π is non-deterministic with randomness space R and

Pr

[
(pk, sk)← KGen(λ),

M,M ′←$M, r, r′←$R
: Enc(pk,M ; r) = Enc(pk,M ′; r′)

]
≤ ε.

Definition 4 (Finding failing ciphertexts). For a deterministic PKE, the
FFC-advantage of an adversary A is defined as

Advpke-ffc
Π,A (λ) := Pr

[
Exppke-ffc

Π,A (λ) = 1
]
,

where the experiment Exppke-ffc
Π,A is given in Figure 4.
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Exp. Expkem-ind-cca
KEM,A (λ)

(pk, sk)← KGen(λ)

(C∗, k0)← Encaps(pk), k1 ←$K
b←$ {0, 1}
b′ ← ADecaps(sk,·)(pk, C∗, kb)

if b = b′ then return 1 else return 0

Fig. 5. KEM-IND-CCA security experiment for KEM.

Key-encapsulation mechanism. A key-encapsulation mechanism (KEM)
scheme KEM with key space K consists of the three PPT algorithms
(KGen,Encaps,Decaps): KGen(λ), on input security parameter λ, outputs public
and secret keys (pk, sk). Encaps(pk), on input pk, outputs a ciphertext C and
key k. Decaps(sk, C), on input sk and C, outputs k or {⊥}.
Correctness of KEM.We call a KEM δ-correct if for all λ ∈ N, for all (pk, sk)←
KGen(λ), for all (C, k)← Enc(pk), we have that

Pr[Dec(sk, C) 6= k ] ≤ δ.

KEM-IND-CCA security. We say a KEM KEM is KEM-IND-CCA-secure if
and only if any PPT adversary A has only negligible advantage in the following
security experiment. First, A gets an honestly generated public key pk as well
as a ciphertext-key pair (C∗, kb), for (C∗, k0) ← Encaps(pk), for k1←$K, and
for b←$ {0, 1}. A has access to a decapsulation oracle Dec(sk, ·) and we require
that A never queries Decaps(sk, C∗). Eventually, A outputs a guess b′. Finally,
if b = b′, then the experiment outputs 1.

Definition 5. For any PPT adversary A, the advantage functions

Advkem-ind-cca
KEM,A (λ) :=

∣∣∣∣Pr[Expkem-ind-cca
KEM,A (λ) = 1

]
− 1

2

∣∣∣∣,
is negligible in λ, where the experiment Expkem-ind-cca

KEM,A (λ) is given in Figure 5 and
KEM is a KEM as above.

2.2 Identity-Based Encryption

An identity-based encryption (IBE) scheme IBE with identity space ID and mes-
sage spaceM consists of the PPT algorithms (KGen,Ext,Enc,Dec): KGen(λ) on
input security parameter λ, outputs main public and secret keys (mpk,msk).
Ext(msk, id) on input identity id ∈ ID, outputs an identity secret key skid .
Enc(mpk, id ,M) on input mpk, id ∈ ID, and message M ∈ M, outputs a ci-
phertext C. Dec(skid , C) on input skid and C, outputs M ∈M∪ {⊥}.
Correctness of IBE. Analogous to [HHK17a] we define δ-correctness of an IBE
IBE for any id ∈ ID as

E

[
max
M∈M

Pr[C ← Enc(mpk, id ,M) : Dec(skid , C) 6=M ]

]
≤ δ(λ),
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where the expected value is taken over all (mpk,msk) ← KGen(λ) and skid ←
Ext(msk, id).

IBE-sIND-CPA security of IBE. We say an IBE scheme IBE is IBE-sIND-
CPA-secure if and only if any PPT adversary A has only negligible advantage
in the following security experiment. First, A outputs the target identity id∗

and, subsequently, gets an honestly generated main public key mpk. During the
experiment, but after providing id∗, A has access to a secret-key extraction
oracle Ext(msk, ·) where we require that A never queries an identity secret key
for id∗. At some point, A outputs equal-length messages (M0,M1) and receives
a challenge ciphertext C∗ ← Enc(mpk, id∗,Mb), for b←$ {0, 1}. Eventually, A
outputs a guess b′; if b = b′, then the experiment outputs 1. The experiment is
depicted in Figure 6.

Definition 6. For any PPT adversary A, the advantage function

Advibe-sind-cpa
IBE,B (λ) :=

∣∣∣∣Pr[Expibe-sind-cpa
IBE,A (λ) = 1

]
− 1

2

∣∣∣∣ ,
is negligible in λ, where the experiment Expibe-sind-cpa

IBE,A (λ) is given in Figure 6 and
IBE is an IBE scheme.

Exp. Expibe-sind-cpa
IBE,A (λ)

id∗ ← A(λ)

(mpk,msk)← KGen(λ)

(M0,M1)← AExt(msk,·)(mpk)

b←$ {0, 1}
C∗ ← Enc(mpk, id∗,Mb)

b′ ← AExt(msk,·)(C∗)

if b = b′ then return 1 else return 0

Fig. 6. IBE-sIND-CPA experiment for IBE scheme IBE.

γ-spreadness of IBE. In order to prove our Bloom filter KEM CCA-secure in
Section 5, we need an additionally property of the underlying IBE scheme which
essentially guarantees that honestly generated IBE ciphertexts have large-enough
min-entropy.

Definition 7 (γ-Spreadness of IBE). For all λ ∈ N, an IBE scheme IBE is γ-
spread, if for any (mpk, ·)← KGen(λ), any identity id ∈ ID, any message M ∈
M, any C ∈ C, and r←$R, where C and R are the ciphertext and randomness
spaces of IBE, respectively, we have that Pr[C = Enc(mpk, id ,M ; r)] ≤ 2−γ holds,
where the probability is taken over the random coins of KGen.

10



3 CCA Security from Non-Negligible Correctness Errors

In this section, we present our approaches to generically achieve CCA secure
KEMs in the (Q)ROM with negligible correctness error when starting from an
OW-CPA or IND-CPA secure PKE with non-negligible correctness error. We start
by discussing the definitions of correctness errors of PKE and KEMs. Then,
we present a generic transform based on the direct product compiler of Dwork
et al. [DNR04] and revisit certain FO transformation variants from [HHK17a]
(in particular the T and U transformations), their considerations in the
QROM [BHH+19] and their application with the direct product compiler. As a
better alternative, we analyze the non-black-box use of the previous technique
yielding transformation T?, that combines the direct product compiler with the
T transformation. Finally, we provide a comprehensive comparison of the two
approaches.

3.1 On the Correctness Error

In this work, we use the δ-correctness for PKEs given by HHK in [HHK17a]. With
this definition, particularly bad keys in terms of correctness error only contribute
a fraction to the overall correctness error as it averages the error probability over
all key pairs: if there are negligible many keys with a higher correctness error,
then those keys do not really contribute to the overall correctness error. At the
same time this definition is tailored, via maxing over all possible messages, to the
security proofs of the FO-transforms where an adversary could actively search
for the worst possible message, in order to trigger decryption failure. As also
done by Dwork et al. [DNR04], we explicitly write the correctness error as a
function in the security parameter:

Definition 8. A PKE Π is δ(·)-correct if

E

[
max
M∈M

Pr[C ← Enc(pk,M) : Dec(sk, C) 6=M ]

]
≤ δ(λ),

where the expected value is taken over all (pk, sk)← KGen(λ).

It will be important for our transform to make explicit that the correctness error
depends on the security level, as this allows us to chose a function `(·) such that
δ(λ)`(λ) ≤ 2−λ. We will often just write δ = δ(λ) and ` = `(λ) for simplicity.

An alternative but equivalent definition, as used in [HHK17a], can be given
in the following form: a PKE Π is called δ(·)-correct if we have for all (possibly
unbounded) adversaries A that

Advcor
Π,A(λ) = Pr

[
Expcor

Π,A(λ) = 1
]
≤ δ(λ),

where the experiment is given in Figure 7. If Π is defined relative to a random
oracle H, then the adversary is given access to the random oracle and δ is ad-
ditionally a function in the number of queries qH, i.e., the bound is given by

11



Exp. Expcor
Π,A(λ)

(pk, sk)← KGen(λ)

M ← A(pk, sk)

if M 6= Dec(sk,Enc(pk,M)) then return 1 else return 0

Fig. 7. Correctness experiment for PKE.

≤ δ(λ, qH). We note that in [BS20] an alternative definition of correctness was
proposed, where the adversary does not get access to sk and the adversary’s
runtime is bounded. With this change, it can be run as part of the IND-CCA
experiment which does not change the power of the IND-CCA adversary and ad-
ditionaly removes a factor qH from the correctness error and advantage analysis.
In particular, one can obtain an upper bound for IND-CCA security of a scheme
via the correctness error.

We recall, for completeness, the definition of correctness error, here denoted
as DNR-δ-correctness (from Dwork-Naor-Reingold), used by Dwork et al.:

Definition 9 (Def. 2, Def. 3 [DNR04]). A PKE Π is

– DNR-δ(·)-correct if we have that

Pr[Dec(sk,Enc(pk,M)) 6=M ] ≤ δ(λ),

where the probability is taken over the choice of key pairs (pk, sk)← KGen(λ),
M ∈M and over the random coins of Enc and Dec.

– DNR-(almost-)all-keys δ(·)-correct if for all (but negligible many) keys
(pk, sk)← KGen(λ), we have that

Pr[Dec(sk,Enc(pk,M)) 6=M ] ≤ δ(λ),

where the probability is taken over the choice ofM ∈M and over the random
coins of Enc and Dec.

Correctness error in this sense still allows bad key pairs that potentially have an
even worse error but it is not suited for our security proofs as the probability
is also taken over M ←$M. Recently Drucker et al. [DGKP20] introduced the
notion of message agnostic PKE and showed that all the versions of BIKE, a
2nd round candidate in the NIST PQC, are message-agnostic: in such a PKE,
the probability that, given (sk, pk), the encryption of a message M ∈ M cor-
rectly decrypts is independent of the message M ∈M itself. For such PKEs the
definitions of δ-correctness and DNR-δ-correctness coincide (Cor. 1 [DGKP20]).

3.2 Compiler for Immunizing Decryption Errors

Now we present two variants of a compiler Cp denoted Cp,d (for deterministic
schemes) and Cp,r (for randomized schemes) which is based on the direct prod-
uct compiler by Dwork et al. [DNR04]. We recall that the idea is to take a PKE
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Π ′.KGen′(λ, `)

// if Cp,r

return Π.KGen(λ)

// if Cp,d

for i ∈ [`]

(pki, ski)← Π.KGen(λ)

pk := (pk1, . . . , pk`)

sk := (sk1, . . . , sk`)

return (pk, sk)

Π ′.Enc′(pk,M)

for i ∈ [`]

// if Cp,r

ri ←$Π.R
Ci ← Π.Enc(pk,M ; ri)

// if Cp,d

Ci ← Π.Enc(pki,M)

C := (C1. . . . , C`)

return C

Π ′.Dec′(sk, C)

C := (C1. . . . , C`)

for i ∈ [`]

// if Cp,r

M ′i := Π.Dec(sk, Ci)

// if Cp,d

M ′i := Π.Dec(ski, Ci)

return maj(M ′1, . . . ,M
′
`)

Fig. 8. Compilers Cp,d and Cp,r.

scheme Π = (KGen,Enc,Dec) with non-negligible correctness error δ (and ran-
domness space R in case of randomized schemes) and output a PKE scheme
Π ′ = (KGen′,Enc′,Dec′) with negligible correctness error δ′ (and randomness
space R′ := R`, for some ` ∈ N, in case of a randomized schemes). We present a
precise description of the compilers in Figure 8. Note that in Dec′, the message
that is returned most often by Dec is returned. If two or more messages are tied,
one of them is returned arbitrarily and we denote this operation as maj(M ′).
Analyzing correctness. Dwork et al. in [DNR04] explicitly discuss the ampli-
fication of the correctness for encryption schemes with a binary message space
M = {0, 1} and obtain that to achieve DNR-δ′-correctness ` > c/(1− δ)2 · log 1/δ′

when starting from a scheme with DNR-δ-correctness. As c is some constant
that is never made explicit, the formula is more of theoretical interest and for
concrete instances it is hard to estimate the number of required ciphertexts. We
can however analyze the probabilities that the majority vote in Dec′ returns the
correct result. As far as the correctness notion used in this work is concerned,
in order to prove an acceptable good lower bound for the δ-correctness of the
direct product compiler, it suffices to find an event, in which the decryption
procedure fails, that happens with a large enough probability. The following
reasoning applies to both its deterministic and randomized versions, Cp,d and
Cp,r respectively. One such case is the following: only 1 ciphertext correctly de-
crypts and all other `− 1 ciphertexts decrypt to `− 1 distinct wrong messages.
During the maj operation, one of the “wrong” messages is then returned. The
probability of this event is

`− 1

`

(
`

`− 1

)
δ`−1(1− δ)M − 1

M − 1

M − 2

M − 1
· · ·M − (`− 1)

M − 1
.

Looking ahead to our compiler T∗ presented in Section 3.4, if the message space
is sufficiently large, this probability is bigger than δ`−1(1− δ), which gives that
at least one more ciphertext is needed to achieve the same decryption error as
with our compiler T∗. The results are shown in Table 1. One can compute the
exact probability of decryption error by listing all cases in which the decryption
fails and summing up all these probabilities to obtain the overall decryption
failure of the direct product compiler. This computation is not going to give a
significantly different result from the lower bound that we have just computed.
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Table 1. Estimation of the correctness error for the direct product compilers. δ′(`)
denotes the correctness error for ` ciphertexts.

δ δ′(2) δ′(3) δ′(4)

2−32 ≈ 2−32 ≈ 2−63 ≈ 2−94

2−64 ≈ 2−64 ≈ 2−127 ≈ 2−190

2−96 ≈ 2−96 ≈ 2−191 ≈ 2−284

We note that using 2 parallel ciphertexts does not improve the correctness
error, so the direct product compiler only becomes interesting for ` ≥ 3: indeed
for ` = 2, we have 3 possible outcomes in which the decryption algorithm can
fail: 1) the first ciphertext decrypts and the second does not, 2) vice versa, 3)
both fail to decrypt. In 1), 2), half the time the wrong plaintext is returned.
Summing these probabilities gives exactly δ.

Remark 1. As far as the deterministic direct product compiler Cp,d is concerned,
the correctness error can be improved by modifying the decryption: instead of
relying on the maj operation, we can re-encrypt the plaintexts obtained during
decryption with the respective keys and compare them to the original cipher-
texts. Only if this check passes, the plaintext is returned. If this is done, then
decryption fails iff no ciphertext decrypts correctly, i.e., with probability δ`,
and thereby the number of parallel repetition necessary to achieve negligible
correctness-error is reduced at the cost of a computational overhead in the de-
cryption. We denote this version of the deterministic direct product compiler by
C?p,d.

Their security follows by applying Theorem 1 with q = 1 and n = ` in the
deterministic case, for both Cp,d and C?p,d, or vice versa with q = ` and n = 1 in
the randomized case:

Corollary 1. For any x-CPA adversary B against Π ′ obtained via applying Cp,y

to Π, there exists an x-CPA adversary A such that:

Advpke-x-cpa
Π′,B (λ) ≤ ` · Advpke-x-cpa

Π,A (λ),

where y = d if x = OW and y = r if x = IND.

As the analysis above suggests, ` will be a small constant, so the loss in ` does
not pose a problem regarding tightness.

3.3 Transformations T and U6⊥

Subsequently, we discuss basic transformations from [HHK17b] to first trans-
form an IND-CPA secure PKE into an OW-PCA secure PKE (transformation T
in [HHK17b]) and then to convert an OW-PCA secure PKE into an IND-CCA
secure KEM with implicit rejection (transformation U6⊥ in [HHK17b]) and we
discuss alternative transformations later. We stress that these transformations
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Π ′.Enc(pk,M)

C := Π.Enc(pk,M ;G(M))

return C

Π ′.Dec(sk, C)

M ′ := Π.Dec(sk, C)

if M ′ = ⊥ or C 6= Π.Enc(pk,M ′;G(M ′))

return ⊥
else return M ′

Fig. 9. OW-PCA-secure scheme Π ′ = T[Π,G] with deterministic encryption.

either work for perfectly correct schemes or schemes with a negligible correctness
error.
T: IND-CPA =⇒ OW-PCA (ROM)/OW-CPA (QROM). The transform T is
a simple de-randomization of a PKE by deriving the randomness r used by
the algorithm Enc via evaluating a random oracle (RO) on the message to be
encrypted. More precisely, let Π = (KGen,Enc,Dec) be a PKE with message
spaceM and randomness spaceR and G :M→R be a RO. We denote the PKE
Π ′ obtained by applying transformation T depicted in Figure 9 as Π ′ = T[Π,G],
where Π ′.KGen = Π.KGen and is thus omitted.

For the ROM, we recall the following theorem:

Theorem 2 (Thm. 3.2 [HHK17b] (Π IND-CPA =⇒ Π ′ OW-PCA)). As-
sume Π to be δ-correct. Then, Π ′ is δ1(qG) = qG ·δ correct and for any OW-PCA
adversary B that issues at most qG queries to the RO G and qP queries to a
plaintext checking oracle Pco, there exists an IND-CPA adversary A running in
about the same time as B such that

Advpke-ow-pca
Π′,B (λ) ≤ qG · δ +

2qG + 1

|M|
+ 3 · Advpke-ind-cpa

Π,A (λ).

And for the QROM, we recall the following theorem:

Theorem 3 (Thm. 1 [BHH+19] (Π IND-CPA =⇒ Π ′ OW-CPA)). If A
is an OW-CPA-adversary against Π ′ = T[Π,G] issuing at most qG queries to
the quantum-accessible RO G of at most depth d, then there exists an IND-CPA
adversary B against Π running in about the same time as A such that

Advpke-ow-cpa
Π′,A (λ) ≤ (d+ 1)

(
Advpke-ind-cpa

Π,B (λ) +
8(qG + 1)

|M|

)
.

U6⊥: OW-PCA =⇒ IND-CCA. The transformation U 6⊥ transforms any OW-PCA
secure PKE Π ′ into an IND-CCA secure KEM in the (Q)ROM. The basic idea
is that one encrypts a random message M from the message space M of Π ′
and the encapsulated key is the RO evaluated on the message M and the cor-
responding ciphertext C under Π ′. This transformation uses implicit rejection
and on decryption failure does not return ⊥, but an evaluation of the RO on
the ciphertext and a random message s ∈ M, being part of sk of the resulting
KEM, as a “wrong” encapsulation key. It is depicted in Figure 10.

In the ROM, we have the following result:
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KEM.KGen(λ)

(pk′, sk′)← Π ′.KGen(λ)

s←$M
sk := (sk′, s)

return (pk′, sk)

KEM.Encaps(pk)

M ←$M
C ← Π ′.Enc(pk,M)

K := H(M,C)

return (K,C)

KEM.Decaps (sk,C)

Parse sk = (sk′, s)

M ′ := Π ′.Dec(sk′, C)

if M ′ 6= ⊥
return K := H(M ′, C)

else return K := H(s, C)

Fig. 10. IND-CCA-secure KEM scheme KEM = U6⊥[Π ′,H].

Theorem 4 (Thm. 3.4 [HHK17b] (Π ′ OW-PCA =⇒ KEM IND-CCA)).
If Π ′ is δ1-correct, then KEM is δ1-correct in the random oracle model. For any
IND-CCA adversary B against KEM, issuing at most qH queries to the random
oracle H, there exists an OW-PCA adversary A against Π ′ running in about the
same time as B that makes at most qH queries to the Pco oracle such that

Advkem-ind-cca
KEM,B (λ) ≤ qH

|M|
+ Advpke-ow-pca

Π′,A (λ).

For the QROM, we have the following non-tight result:

Theorem 5 (Thm. 6 [JZM19] (Π ′ OW-PCA =⇒ KEM IND-CCA)). Let
Π ′ be a deterministic PKE scheme which is independent of H. Let B be an
IND-CCA adversary against the KEM U6⊥[Π ′,H], and suppose that A makes at
most qd (classical) decryption queries and qH queries to quantum-accessible ran-
dom oracle H of depth at most d, then there exists and adversary B against Π ′
such that

Advkem-ind-cca
U 6⊥[Π′,H],A(λ) ≤

2 · qH√
|M|

+ 2 ·
√
(qH + 1)(2 · δ + Advpke-ow-cpa

Π′,B (λ)).

If we assume ε-injectivity and FFC, respectively, we have tighter bounds:

Theorem 6 (Thm. 4.6 [KSS+20] (Π ′ OW-CPA+FFC =⇒ KEM IND-CCA)).
Let Π ′ be an ε-injective deterministic PKE scheme which is independent of
H. Suppose that A is an IND-CCA adversary against the KEM U 6⊥[Π ′,H], and
suppose that A makes at most qd (classical) decryption queries and qH queries
to quantum-accessible random oracle H of depth at most d, then there exist two
adversaries running in about the same time as A:

– an OW-CPA-adversary B1 against Π ′ and
– a FFC-adversary B2 against Π ′ returning a list of at most qd ciphertexts,

such that

Advkem-ind-cca
U6⊥[Π′,H],A(λ) ≤ 4d · Advpke-ow-cpa

Π′,B1
(λ) + 6Advpke-ffc

Π′,B2
(λ) + (4d+ 6) · ε.

FO 6⊥[Π,G,H]. By combining transformation T with U 6⊥ one consequently obtains
an IND-CCA secure KEM KEM from an IND-CPA secure PKE Π. Note that the
security reduction of the FO 6⊥ := U 6⊥ ◦T variant of the FO is tight in the random
oracle model and works even if Π has negligible correctness error instead of
perfect correctness.
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FO 6⊥[Π,G,H] in the QROM. Hofheinz et al. in [HHK17b] also provide vari-
ants of the FO transform that are secure in the QROM, but they are (highly)
non-tight. Bindel et al. [BHH+19] presented a tighter proof for U 6⊥ under an ad-
ditional assumption of ε-injectivity. This result was recently improved by Kuchta
et al. [KSS+20]. Additionally, Jiang et al. [JZM19] provided tighter proofs for
the general case.
U⊥, U⊥m, U6⊥m and other approaches. Besides the transform with implicit re-
jection, U6⊥, one can also consider explicit rejection, U⊥ and versions of both
where the derived session key depends on the ciphertext, U6⊥m and U⊥m, respec-
tively. Bindel et al. [BHH+19] show that security of implicit rejection implies
security with explicit rejection. The opposite direction also holds if the scheme
with explicit rejection also employs key confirmation. Moreover, they show that
the security is independent of including the ciphertext in the session key deriva-
tion.

A different approach was proposed by Saito et al. [SXY18], where they start
from a deterministic disjoint simulatable PKE and apply U 6⊥m with an addi-
tional re-encryption step in the decryption algorithm. While the original con-
struction relied on a perfectly correct PKE, Jiang et al. gave non-tight reduc-
tions for schemes with negligible correctness error in [JZC+18]. Hövelmanns et
al. [HKSU20] improve over this approach by giving a different modularization of
Saito et al.’s TPunc.

Black-box use of the compiler Cp,d/C
?
p,d/Cp,r. Using Cp,d, C?p,d or Cp,r from

Section 3.2, we can transform any deterministic or randomized PKE with non-
negligible correctness error into one with negligible correctness error. Conse-
quently, Theorem 1 as a result yields a scheme that is compatible with all the
results on the T and variants of the U transformations in this section. Note
that in particular this gives us a general way to apply these variants of the FO
transform to PKE schemes with non-negligible correctness error.

3.4 Non Black-Box Use: the Transformation T?

Since the direct product compiler is rather complicated to analyze, we alterna-
tively investigate to start from an IND-CPA secure PKE Π with non-negligible
correctness error δ and introduce a variant of the transform T to de-randomize
a PKE, denoted T?. The idea is that we compute ` independent encryptions of
the same message M under the same public key pk using randomness G(M, i),
i ∈ [`], where G is a RO (see Figure 11 for a compact description). The resulting
de-randomized PKE Π ′ has then correctness error δ′ := δ`, where ` is chosen in
a way that δ` is negligible. To the resulting PKE Π ′ we can then directly apply
the transformation U6⊥ to obtain an IND-CCA secure KEM KEM with negligible
correctness error in the (Q)ROM.

Note that as we directly integrate the product compiler into the T transform,
the correctness of the message can be checked via the de-randomization. Hence,
we can get rid of the majority vote in the direct product compiler. With this
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Π ′.Enc(pk,M)

for i = 1, . . . , ` do

Ci := Π.Enc(pk,M ;G(M, i))

C := (C1, . . . , C`)

return C

Π ′.Dec(sk, C)

res← ⊥, check← ⊥
for i = 1, . . . , ` do

res[i] := Π.Dec(sk, Ci)

for i ∈ [`] s.t. res[i] 6= ⊥ do

if ∀j ∈ [`] : Cj = Π.Enc(pk, res[i],G(res[i], j))
check← i

if check 6= ⊥
return res[check]

return ⊥

Fig. 11. OW-PCA-secure scheme Π ′ = T?[Π,G] with deterministic encryption and
correctness error δ` from IND-CPA secure scheme Π with correctness error δ.

change the analysis of the concrete choice of ` becomes simpler and, more impor-
tantly, allows us to choose smaller ` than in the black-box use of the compiler.

Remark 2. Note that in Figure 11 we explicitly consider the case where Dec
of the PKE scheme Π may return something arbitrary on failed decryption.
For the simpler case where we have a PKE scheme Π which always returns
⊥ on failed decryption, we can easily adapt the approach in Figure 11.
Namely, we would decrypt all ` ciphertexts Ci, i ∈ [`]. Let h ∈ [`] be the
minimum index such that res[h] 6= ⊥. Then for every element j ∈ [`] run
C ′j := Π.Enc(pk, res[h];G(res[h], j). If for all j ∈ [`] we have C ′j = Cj we
return res[h]. If this is not the case we return ⊥. Note that all ` C ′j have to
be re-encrypted and checked against Cj , as otherwise IND-CCA-security is not
achieved. The difference is, that only ` encryptions instead of `2 are required.

We now show the following theorem.

Theorem 7 (Π IND-CPA =⇒ Π ′ OW-PCA). Assume Π to be δ-correct.
Then, Π ′ is δ1(qG, `) ≤

qG

`
· δ` correct and for any OW-PCA adversary B that

issues at most qG queries to the random oracle G and qP queries to a plaintext
checking oracle Pco, there exists an IND-CPA adversary A running in about the
same time as B such that

Advpke-ow-pca
Π′,B (λ) ≤ qG

`
· δ` + 2qG + 1

|M|
+ 3` · Advpke-ind-cpa

Π,A (λ).

We provide the proof which closely follows the proof of [HHK17b, Thm 3.2] in
Appendix B.1. Note that we lose an additional factor of `. Additionally, when
using the bounded δ-correctness notion from Bindel. et al. [BS20], the factor of
qG disappears.

We now have an OW-PCA secure PKE Π ′ with negligible correctness error
and can thus directly use U 6⊥ and by invoking Theorem 4 obtain an IND-CCA
secure KEM KEM. Note that all steps in the reduction are tight. For the security
in the QROM, we can directly conclude from Corollary 1 that the generic frame-
work of Bindel et al. [BHH+19] can be applied to Cp,d and Cp,r with the additional
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constraint of ε-injectivity and FFC, respectively. Without these additional con-
straints, the results of Jiang et al. [JZM19] or Hövelmanns et al. [HKSU20]1
apply without the tighter reductions that the Bindel et al.’s and Kuchta et al.’s
results offer.

The security of the T? transform in the QROM follows in a similar vein. To
highlight how ` influences the advantages, we follow the proof strategy of Bindel
et al. [BHH+19]. Therefore, we first show that a randomized IND-CPA-secure
PKE scheme with a non-negligible correctness error is transformed to OW-CPA-
secure deterministic PKE scheme with negligible correctness error. Second, we
prove that if the T?-transformed version is also ε-injective, then it provides FFC.
With these two results in place, we can apply Theorem 6 to obtain an IND-CCA-
secure KEM.

In the following theorem, we prove OW-CPA security of the T? transform in
the QROM (see Appendix A.1). We follow the strategy of the proof of [BHH+19,
Thm. 1] and adapt it to our transform. Compared to the T transform, we lose a
factor of `2. Once the loss is incurred by Theorem 1 and once by the semi-classical
one-way to hiding Theorem [AHU19].

Theorem 8 (Π IND-CPA =⇒ Π ′ OW-CPA). Let Π be a non-deterministic
PKE with randomness space R and decryption error δ. Let ` ∈ N such that δ`
is negligible in the security parameter λ. Let G : M× [`] → R be a quantum-
accessible random oracle and let qG the number queries with depth at most d.
If A is an OW-CPA-adversary against T?[Π,G, `], then there exists an IND-CPA
adversary B against Π, running in about same time as A, such that

Advpke-ow-cpa
T?[Π,G,`],A(λ) ≤ (d+ `+ 1)

(
` · Advpke-ind-cpa

Π,B (λ) +
8(qG + 1)

|M|

)
.

We refer to Appendix B.2 for the proof. Next, we show that the transform
provides the FFC property (cf. [BHH+19, Lemma 6]).

Lemma 2. If Π is a δ-correct non-deterministic PKE with randomness space
R, ` ∈ N such that δ` is negligible in the security parameter λ, G :M× [`]→ R
is a random oracle so that Π ′ = T?[Π,G, `] is ε-injective, then the advantage for
any FFC-adversary A against Π ′ which makes at most qG queries at depth d to
G and which returns a list of at most qL ciphertexts is bounded by

Advpke-ffc
Π′,A (λ) ≤

(
(4d+ 1)δ` +

√
3ε
)
(qG + qL) + ε.

For the proof we refer to Appendix B.3.

3.5 Comparison of the Two Approaches

The major difference between the generic approach using the direct product
compiler Cp,y, y ∈ {r, d}, and T? (or the modified deterministic direct product
1 Without restating [HKSU20, Thm 3.2], note that we can adopt it the same way
we highlight in Theorems 7 and 8. So, we start with their Punc to obtain disjoint
simutability and then apply T? and U 6⊥m .
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Table 2. Comparison of the runtime and bandwidth overheads of Cp,y, y ∈ {r, d}, with
` ciphertexts and T? and C?p,d with `′ ciphertexts such that ` ≥ `′ + 1.

|pk| |C| KGen Enc Dec

Cp,y 1 (r) / ` (d) ` 1 (r) / ` (d) ` `
C?p,d `′ `′ `′ `′ `′

T? 1 `′ 1 `′ `′2 / `′ (⊥)

compiler C?p,d) is the number of ciphertexts required to reach a negligible correct-
ness error. As observed in Section 3.2, the analysis of the overall decryption error
is rather complicated and Cp,y requires at least ` ≥ 3. With T?/C?p,d however,
the situation is simpler. As soon as one ciphertext decrypts correctly, the overall
correctness of the decryption can be guaranteed. Also, for the cases analysed in
Table 1, Cp,y requires at least one ciphertext more than T? and C?p,d. For the
correctness error, we have a loss in the number of random oracle queries in both
cases. For the comparison of the runtime and bandwidth overheads, we refer
to Table 2. Note that if the Dec of the underlying PKE Π reports decryption
failures with ⊥, then the overhead of T? for Dec is only a factor ` (cf. Remark 2).

4 Our Transform in Practice

The most obvious use-case for IND-CCA secure KEMs in practice is when consid-
ering static long-term keys. Systems supporting such a setting are for example
RSA-based key exchange for SSH [Har06] or similarly in TLS up to version 1.2.
But since the use of long-term keys precludes forward-secrecy guarantees, using
static keys is not desirable. For ephemeral keys such as used in the ephemeral
Diffie-Hellman key exchange, an IND-CPA secure KEM might seem sufficient.
Yet, in the post-quantum setting accidental re-use of an ephemeral key leads to
a wide range of attacks [BGRR19]. But also from a theoretical viewpoint it is
unclear whether CPA security actually would be enough. Security analysis of the
TLS handshake protocol suggests that in the case of version 1.2 an only passively
secure version is insufficient [JKSS12, KPW13] (cf. also [PST20]). Also, secu-
rity analysis of the version 1.3 handshake requires IND-CCA security [DFGS15].
Thus, even in the case of ephemeral key exchanges, using a IND-CCA secure
KEM is actually desirable and often even necessary as highlighted by Schwabe
et al. [SSW20].

For comparing KEMs in this context, the interesting metric is hence not the
ciphertext size alone, but the combined public key and ciphertext size. Both
parts influence the communication cost of the protocols. Additionally, the com-
bined runtime of the key generation, encapsulation and decapsulation is also an
interesting metric. All three operations are performed in a typical ephemeral key
exchange and hence give a lower bound for the overall runtime of the protocol.
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Table 3. Sizes (in bytes) and runtimes (in ms and millions of cycles for BIKE), where
O denotes the transformed scheme. The LEDAcrypt instances with postfix NN refer
to those with non-negligible DFR. Runtimes are taken from the respective submission
documents and are only intra-scheme comparable.

KEM δ pk C
∑

KGen Encaps Decaps

O[ROLLO-I-L1,5] 2−150 465 2325 2790 0.10 0.02/0.10 0.26/1.30
ROLLO-II-L1 2−128 1546 1674 3220 0.69 0.08 0.53

O[ROLLO-I-L3,4] 2−128 590 2360 2950 0.13 0.02/0.08 0.42/1.68
ROLLO-II-L3 2−128 2020 2148 4168 0.83 0.09 0.69

O[ROLLO-I-L5,4] 2−168 947 7576 8523 0.20 0.03/0.12 0.78/3.12
ROLLO-II-L5 2−128 2493 2621 5114 0.79 0.10 0.84

O[BIKE-2-L1,3] 2−147 10163 30489 40652 4.79 0.14/0.42 3.29/9.88
BIKE-2-CCA-L1 2−128 11779 12035 23814 6.32 0.20 4.12

O[LEDAcrypt-L5-NN,2] 2−128 22272 22272 44544 5.04 0.14/0.29 1.55/3.11
LEDAcrypt-L5 2−128 19040 19040 38080 4.25 0.84 2.28

In the following comparison, we assume that the underlying PKE never re-
turns ⊥ on failure, but an incorrect message instead. Thereby we obtain an upper
bound for the runtime of the Decaps algorithm. For specific cases where Decaps
explicitly returns ⊥ on failure, the runtime figures would get better since the
overhead to check the ciphertexts is reduced to a factor of ` (cf. Remark 2).

4.1 Code-Based KEMs

KEMs based on error correcting codes can be parametrized such that the decod-
ing failure rate (DFR) is non-negligible, negligible, or 0. Interestingly, the DFR
rate is also influenced by the actual decoder. Even for the same choice of code
and the exact same instance of the code, a decoder might have a non-negligible
DFR, whereas another (usually more complex) decoder obtains a negligible DFR.
For the submissions in the NIST PQC we can observe all three choices. The
candidates providing IND-CPA-secure variants with non-negligible DFR include:
BIKE [ABB+19], ROLLO [ABD+19], and LEDAcrypt [BBC+19]. We discuss
the application of our transform to those schemes below. For the comparison in
Table 3, we consider the DFR as upper bound for correctness error.

In Table 3, we present an overview of the comparison (see Appendix C for
the full comparison). First we consider ROLLO, and in particular ROLLO-I,
where we obtain the best results: public key and ciphertext size combined is
always smaller than for ROLLO-II and the parallel implementation is faster
even in case of a `2 overhead. For both BIKE (using T?) and LEDAcrypt (using
C?p,d since it starts from a deterministic PKE), we observe a trade-off between
bandwidth and runtime.
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4.2 Lattice-Based KEMs

For lattice-based primitives the decryption error depends both on the modulus q
and the error distribution used. As discussed in [SAB+19], an important decision
that designers have to make is whether to allow decryption failures or choose
parameters that not only have a negligible, but a zero chance of failure. Hav-
ing a perfectly correct encryption makes transforms to obtain IND-CCA security
and security proofs easier, but with the disadvantage that this means either de-
creasing security against attacks targeting the underlying lattice problem or de-
creasing performance. The only NIST PQC submissions based on lattices which
provide parameter sets achieving both negligible and non-negligible decryption
failure are ThreeBears [Ham19] and Round5 [GZB+19]. The IND-CCA-secure
version of ThreeBears is obtained by tweaking the error distribution, hence, our
approach does not yield any improvements. For Round5 we achieve a trade-off be-
tween bandwidth and runtime. We also considered FrodoKEM [NAB+19], com-
paring its version [BCD+16] precedent to the NIST PQC, which only achieved
non-negligible failure probability, to the ones in the second round of the above
competition, but we do not observe any improvements for this scheme. For the
full comparison we refer to Appendix C. It would be interesting to understand
the reasons why the compiler does not perform well on lattice-based scheme com-
pared to the code-based ones and whether this is due to the particular schemes
analysed or due to some intrinsic difference between code- and lattice-based
constructions.

4.3 Implementation Aspects

One of the strengths of T? compared to the black-box use of Cp,y, y ∈ {r, d}
(and Cp,d

?), is that besides the initial generation of the encapsulated key, all the
random oracle calls can be evaluated independently. Therefore, the encryptions
of the underlying PKE do not depend on each other. Thus, the encapsulation
algorithms are easily parallelizable – both in software and hardware. The same
applies to the decapsulation algorithm. While in this case only one successful
run of the algorithm is required, doing all of them in parallel helps to obtain a
constant-time implementation. Then, after all ciphertexts have been processed,
the first valid one can be used to re-compute the ciphertexts, which can be done
again in parallel. For software implementations on multi-core CPUs as seen on
today’s desktops, servers, and smartphones with 4 or more cores, the overhead
compared to the IND-CPA secure version is thus insignificant as long as the error
is below 2−32. If not implemented in a parallel fashion, providing a constant-time
implementation of the decapsulation algorithms is more costly. In that case, all of
the ciphertexts have to be dealt with to not leak the index of invalid ciphertexts.
Note that a constant-time implementation of the transform is important to avoid
key-recovery attacks [GJN20].

The T? transform also avoids new attack vectors such as [GJY19] that are
introduced via different techniques to decrease the correctness error, e.g., by
applying an error-correcting code on top. Furthermore, since the same parameter
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sets are used for the IND-CPA and IND-CCA secure version when applying our
transforms, the implementations of proposals with different parameter sets can
be simplified. Thus, more focus can be put on analysing one of the parameter
sets and also on optimizing the implementation of one of them.

5 Application to Bloom Filter KEMs

A Bloom Filter Key Encapsulation Mechanism (BFKEM) [DJSS18, DGJ+18] is
a specific type of a puncturable encryption scheme [GM15, GHJL17, DJSS18,
SSS+20] where one associates a Bloom Filter (BF) [Blo70] to its public-secret key
pair depending on the BF-parameters k,m ∈ N. The initial (i.e., non-punctured)
secret key is associated to an empty BF where all bits are set to 0. (In particu-
lar, the BF allows for a compact binary representation T of [m].) Encapsulation,
depending on a so-called tag u in the universe of the BF, takes the public key,
and returns a ciphertext and an encapsulation key k corresponding to the BF-
evaluation of u, i.e., k hash evaluations on u yielding so-called indexes in the
domain [m]. Puncturing, on input a ciphertext C (associated to tag u) and a
secret key sk′, punctures sk′ on C and returns the resulting secret key. Decap-
sulation, on input a ciphertext C (with an associated tag u) and secret key sk′

is able to decapsulate the ciphertext to k if sk′ was not punctured on C. We
want to mention, as in [DGJ+18], we solely focus on KEMs since a Bloom Filter
Encryption (BFE) scheme (which encrypts a message from some message space)
can be generically derived from a BFKEM (cf. [FO99]).

The basic instantiation of a BFKEM in [DJSS18, DGJ+18] is non-black box
and based on the pairing-based Boneh-Franklin Identity-Based Encryption (IBE)
scheme [BF01], where sk contains an IBE secret key for every “identity” i ∈ [m]
of the BF bits (according to T ) and puncturing amounts to inserting tag u in
the BF and deleting the IBE secret keys for the corresponding bits. Although
the BFKEM is defined with respect to a non-negligible correctness error, the
underlying variant of the Boneh-Franklin IBE has perfect correctness. So the
non-negligible error in the BFKEM is only introduced on an abstraction (at
the level of the BF) above the Fujisaki-Okamoto (FO) transform [FO99, FO13]
applied to the k Boneh-Franklin IBE ciphertexts (so the application of the FO
can be done as usual for perfectly correct encryption schemes).

However, if one targets instantiations of BFKEM where the underlying IBE
does not have perfect correctness (e.g., lattice- or code-based IBEs), it is not
obvious whether the security proof using the Boneh-Franklin IBE as presented
in [DJSS18, DGJ+18] can easily be adapted to this setting.2

2 For practical reasons, we want the size of the BFKEM public key to be independent
of the BF parameters (besides the descriptions of the hash functions). Right now, we
only can guarantee this with IBE schemes as such schemes allow for exponentially
many identity-based secret keys (in the security parameter) while maintaining a
short public key.
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We first recall necessary definitions for BFs, BFKEMS, and their properties
from [DGJ+18] and show a generic construction of BFKEM from any IBE scheme
with (non-)negligible correctness error in Section 5.1.

Definition 10 (Bloom Filter). A Bloom Filter (BF) [Blo70] BF consists of
the PPT algorithms (BFGen,BFUpdate,BFCheck):

BFGen(m, k) : BF generation, on input BF parameters m, k ∈ N, samples k
universal hash functions H1, . . . ,Hk, where Hj : U → [m], for all j ∈ [k],
defines H := (Hj)j∈[k], sets T0 := 0m, i.e., an m-bit array of all 0, and
outputs (H,T0).

BFUpdate(H,T, u) : The BF-update algorithm, on input H = (Hj)j∈[k], T ∈
{0, 1}m, and u ∈ U , sets T ′ := T and, afterwards, T ′[Hj(u)] := 1, where
T ′[i] denotes the i-th bit of T ′, for all j ∈ [k]. The algorithms outputs the
updated state T ′.

BFCheck(H,T, u) : The BF-check algorithm, on input H = (Hj)j∈[k],
T ∈ {0, 1}m, and u ∈ U , returns a bit b :=

∧
j∈[k] T [Hj(u)], where T [i]

denotes the i-th bit of T .

For all m, k ∈ N, we require the following properties of BF:

Perfect completeness. For all (H,T0) ← BFGen(m, k), for all n ∈ N, for all
(u1, . . . , un) ∈ Un, for all i ∈ [n], for all Ti ← BFUpdate(H,Ti−1, ui), we
require that BFCheck(H,Tn, ui) = 1 holds.

Compact representation of any U ′ ⊂ U . The size of the any representation
Ti, for all Ti as output of BFUpdate, is a constant number of m bits inde-
pendent of the size of any set U ′ ⊂ U and the representation of any element
in U .

Bounded false-positive probability. For all (H,T0) ← BFGen(m, k),
for all n ∈ N, for all U ′ = (u1, . . . , un) ∈ Un, for all i ∈ [n], for
all Ti ← BFUpdate(H,Ti−1, ui), for all u∗ ∈ U \ U ′, we require that

Pr [BFCheck(H,Tn, u
∗) = 1] ≤

(
1− e−

(n+1/2)k
m−1

)k
holds, where the probabil-

ity is taken over the random coins of BFGen.

In the following, we recap the BFKEM and its formal properties
from [DGJ+18] which tolerates a non-negligible correctness error and the
key generation takes parameters m and k as input which specify the correct-
ness error. Furthermore, we slightly adapt their BFKEM properties extended
correctness, separable randomness, and publicly-checkable puncturing to allow
a negligible decryption error for extended correctness and publicly-checkable
puncturing properties while extending the input space for the separable
randomness property.

Definition 11 (Bloom Filter Key Encapsulation Mechanism).
A BFKEM BFKEM with key space K consists of the PPT algorithms
(KGen,Encaps,Punc,Decaps).

24



KGen(λ,m, k) : Key generation, on input security parameter λ and BF param-
eters m, k, outputs public and secret keys (pk, sk0). (We assume that pk is
available to Punc and Decaps implicitly.)

Encaps(pk) : Encapsulation, on input pk, outputs a ciphertext C and key k.
Punc(sk, C) : Secret-key puncturing, on input sk and C, outputs an updated se-

cret key sk′.
Decaps(sk, C) : Decapsulation, on input sk and C, outputs k or {⊥}.

Definition 12 (Correctness of BFKEM). For all λ,m, k, n ∈ N and any
(pk, sk0) ← KGen(λ,m, k), we require that for any (arbitrary interleaved) se-
quence of invocations of ski ← Punc(ski−1, Ci−1), for (Ci−1, ki−1)← Encaps(pk),
for i ∈ [n], it holds that

Pr [Decaps(skn, Cn) 6= kn] ≤
(
1− e−

(n+1/2)k
m−1

)k
+ ε(λ),

where (Cn, kn)← Encaps(pk) and ε is a negligible function in λ. The probability
is taken over the random coins of KGen, Encaps, and Punc.

Definition 13 (Extended Correctness of BFKEM). For all λ,m, k, n ∈ N
and any (pk, sk0) ← KGen(λ,m, k), we require that for any (arbitrary inter-
leaved) sequence of invocations of ski ← Punc(ski−1, Ci−1), where i ∈ [n] and
(Ci−1, ki−1)← Encaps(pk), it holds that:

(a) Impossibility of false-negatives: Decaps(skn, Cj−1) = ⊥, for all j ∈ [n].
(b) Correctness of the initial secret key: Pr[Decaps(sk0, C) 6= k] ≤ ε(λ), for all

(C, k)← Encaps(pk) and ε is a negligible function in λ.
(c) Semi-correctness of punctured secret keys: if Decaps(skj , C) 6= ⊥ then

Pr[Decaps(skj , C) 6= Decaps(sk0, C)] ≤ ε(λ), for all j ∈ [n], any C, and ε is
a negligible function in λ.

All probabilities are taken over the random coins of KGen,Punc, and Encaps. The
difference to [DGJ+18] is that we allow for a negligible error in (b) and (c).

Definition 14 (Separable Randomness of BFKEM). For all λ,m, k ∈ N,
for (pk, ·)← KGen(λ,m, k), a BFKEM BFKEM has the property separable ran-
domness if the encapsulation algorithm Encaps can be written as

(C, k)← Encaps(pk) = Encaps(pk; (r, k)),

for some (r, k) ∈ R × K, for randomness space R = {0, 1}ρ × · · · × {0, 1}ρ︸ ︷︷ ︸
k times

and

key space K of BFKEM, for large-enough integer ρ. Hence, pk, r and k as input
to deterministic Encaps uniquely determine (C, k). The difference to [DGJ+18]
is that we extend the randomness space as input to Encaps.

Definition 15 (Publicly-Checkable Puncturing of BFKEM). For all
λ,m, k, ` ∈ N, BFKEM has the publicly-checkable puncturing property if
there exists a PPT algorithm CheckPunc such that after running (pk, sk0) ←
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KGen(λ,m, k), (Ci−1, ki−1) ← Encaps(pk), and ski ← Punc(ski−1, Ci−1), for
i ∈ [`], we have that

Pr [Decaps(sk`, C) = ⊥ 6⇐⇒ CheckPunc(pk,L, C) = ⊥] ≤ ε(λ),

holds, for L = (C0, . . . , C`−1), for any C, and ε is a negligible function in λ.
The probability is taken over the random coins of KGen,Punc, and Encaps.

Definition 16 (γ-Spreadness of BFKEM). For all λ,m, k, ρ ∈ N,
a BFKEM BFKEM with separable randomness is γ-spread, if for any
(pk, ·) ← KGen(λ,m, k), any keys k ∈ K, r ← R, and any C ∈ C, where R and
C are the randomness and ciphertext spaces of BFKEM, respectively, we have
that Pr[(C, ·) = Encaps(pk; (r, k))] ≤ 2−γ holds, where the probability is taken
over the random coins of KGen.

BFKEM-IND-CPA and BFKEM-IND-CCA security. We say a BFKEM
BFKEM is BFKEM-IND-CPA or BFKEM-IND-CCA secure if and only if any
PPT adversary A has only negligible advantage in the following security experi-
ments. First, A gets an honestly generated public key pk as well as a ciphertext-
key pair (C∗, k∗b), for (C∗, k0) ← Encaps(pk), for k1←$K, and for b←$ {0, 1}.
Furthermore, A has access to Punc′-, Cor-, and Decaps′-oracle (with initially
empty set L with ` := 0 and the latter oracle only in the BFKEM-IND-CCA-
security experiment):

Punc′(C) : on input C, set L := L ∪ {C} and ` := ` + 1, compute sk` ←
Punc(sk`−1, C), store and return sk`.

Cor : if C∗ ∈ L, then return sk`, else outputs ⊥.
Decaps′(C) : on input C, if C 6= C∗, then return Decaps(sk0, C), else return ⊥.

Eventually, A outputs a guess b′. Finally, if b = b′, then the experiment outputs
1. The formal experiments are depicted in Figure 12.

Definition 17. For any PPT adversary A and all λ,m, k ∈ N, the advantage
functions

Advbfkem-ind-y
BFKEM,A (λ,m, k) :=

∣∣∣∣Pr[Expbfkem-ind-y
BFKEM,A (λ,m, k) = 1

]
− 1

2

∣∣∣∣ ,
for y ∈ {cpa, cca}, are negligible in λ, where the experiments Expbfkem-ind-y

BFKEM,A (λ,m, k)
are given in Figure 12 and BFKEM is a BFKEM.

5.1 IBE with Negligible from Non-Negligible Correctness Error

We follow the approach for randomized PKE schemes in Section 3.2 adapted
for the IBE case (cf. Figure 13).3 Let IBE = (KGen,Ext,Enc,Dec) be an IBE
3 We explicitly mention that we are only concerned with randomized IBEs. Adopting
Cp,d for deterministic IBEs will work as well. Though in the latter case, one can
further optimize the compiler depending on whether the IBE has deterministic or
randomized key extraction Ext.
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Exp. Expbfkem-ind-y
BFKEM,A (λ,m,k)

(pk, sk0)← KGen(λ,m, k)

(C∗, k∗0)← Encaps(pk), k∗1 ←$K
b←$ {0, 1}

b′ ← APunc′(·),Cor,Decaps′(·)(pk, C∗, k∗b)

if b = b′ then return 1 else return 0

Fig. 12. BFKEM-IND-y security experiments for BFKEM, for y ∈ {CPA,CCA}.
The differences between BFKEM-IND-CPA and BFKEM-IND-CCA are given by
underlining.

Enc′(mpk, id ,M)

for i ∈ [`]

ri ←$R
Ci ← Enc(mpk, id ,M ; ri)

return (C1, . . . , C`)

Dec′(usk id , C)

C =: (C1, . . . , C`)

for i ∈ [`]

M ′i := Dec(usk id , Ci)

return maj(M ′1, . . . ,M
′
`)

Fig. 13. Compiler for Enc′ and Dec′ for constructing an IBE scheme IBE′ with negligible
correctness error from an IBE scheme IBE with non-negligible correctness error.

scheme with identity, message spaces, and randomness spaces ID, M, and R,
respectively, with non-negligible correctness error δ(λ), we construct an IBE
scheme IBE′ = (KGen′,Ext′,Enc′,Dec′) with identity and message spaces ID′ :=
ID and M′ := M, respectively, with negligible correctness error δ′(λ). The
construction is as follows. Set KGen′ := KGen and Ext′ := Ext while Enc′ and
Dec′ are given in Figure 13. See that ` = `(λ) can be chosen appropriately to
accommodate a negligible correctness error δ′(λ).

As for randomized PKE schemes, by an analogue of Theorem 1 for IBEs with
q = ` and n = 1, the security claim follows:

Corollary 2. For any IBE-sIND-CPA adversary B against IBE′ obtained via
applying the above transformation to IBE, there exists an IBE-sIND-CPA adver-
sary A such that

Advibe-sind-cpa
IBE′,B (λ) ≤ ` · Advibe-sind-cpa

IBE,A (λ).

The correctness-error analysis is again equivalent to the one in the PKE scenario.
We refer to Section 3.2 for a more in-depth discussion.

5.2 BFKEM from IBE with Negligible Correctness Error

The intuition for our generic construction from any IBE scheme IBE with negli-
gible correctness error is as follows. We associate “user-secret keys” of IBE with
the indexes i ∈ [m] of the Bloom filter BF and annotate sk′0 as a special key for
“fixed identity” 0. We consider the encapsulation key as k = (k0, k1) where the
first share is encrypted under “identity” 0 (yielding C ′0) while the other share
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KGen(λ,m, k):
(mpk,msk)← IBE.KGen(λ)

(H,T0)← BFGen(m, k)

sk′id ← Ext(msk, id), id ∈ [m] ∪ {0}
pk := (mpk, H), sk := (T0, (sk

′
id)id)

return (pk, sk0)

Punc(ski−1, C):

(T, sk′0, (sk
′
id)id∈[m]) := ski−1

(C0, . . .) := C

T ′ := BFUpdate(H,T,C0)

sk′′id :=

{
sk′id if T ′[id ] = 0,

⊥ if T ′[id ] = 1,

return (T ′, sk′0, (sk
′′
id)id∈[m])

Encaps(pk):
(mpk, H) := pk with (Hj)j∈[k] := H

(k0, k1)←$K
C0 ← Enc(mpk, 0, k0)

id j := Hj(C0), for all j ∈ [k]

Cidj ← Enc(mpk, id j , k1)

return ((C0, (Cidj )j), (k0, k1))

Decaps(ski, C):

(T, (sk′id)id∈[m]∪{0}) := ski
(C0, (Cidj )j∈[k]) := C

if BFCheck(H,T,C0) = 1 return ⊥
find smallest id ∈ [m] with sk′id 6= ⊥
k0 := Dec(sk′0, C0), k1 := Dec(sk′id , Cid)

if k0 = ⊥ or k1 = ⊥ return ⊥
return (k0, k1)

Fig. 14. BFKEM-IND-CPA-secure BFKEM scheme BFKEM =
(KGen,Encaps,Punc,Decaps) from IBE and BF.

is encrypted under the “identities” (ij)j of indexes of the BF that are deter-
mined by C ′0. Put differently, C ′0 acts as a tag of the overall ciphertext while the
other IBE-ciphertexts (C ′ij )j are utilized for correct decryption, i.e., the secret
key is punctured on “tag” C ′0. Note that the secret key sk′0 is not affected by the
puncturing mechanism and one can always at least decrypt C ′0. However, one
additionally needs the encapsulation-key share from the other IBE-ciphertexts
(C ′ij )j ; those ciphertexts can only be decrypted if at least one secret key sk′i′ , for
some index i′ ∈ [m], is available which can be checked with BFCheck.

More concretely, let BF = (BFGen,BFUpdate,BFCheck) be a BF with
universe U and BF (integer) parameters m, k ∈ N. Furthermore, let
IBE = (IBE.KGen,Ext,Enc,Dec) be an IBE-sIND-CPA-secure IBE scheme
with identity space [m] ∪ {0}, message space M, and negligible correctness
error δ = δ(λ). We construct a BFKEM-IND-CPA-secure BFKEM scheme
BFKEM = (KGen,Encaps,Punc,Decaps) with key space K := M × M and
non-negligible correctness error δ′ = δ′(λ,m, k, n) in Figure 14. Later, we show
how to use the BFKEM-IND-CPA-secure BFKEM with additional BFKEM
properties (i.e., extended correctness, separable randomness, publicly-checkable
puncturing, and γ-spreadness) as a stepping stone to build a BFKEM-IND-
CCA-secure BFKEM.
Correctness of BFKEM. According to Definition 12, we have to show

Pr[Decaps(skn, Cn) 6= kn ] ≤ (1− e−
(n+1/2)k

m−1 )k + ε(λ). (1)

We argue that this holds due to the bounded false-positive probability of BF
and due to the negligible IBE correctness error term δ = δ(λ) ≤ ε(λ), for some
negligible function ε(λ) and for any number of punctures n. Concretely, see that
Punc deletes IBE secret keys depending on the BF evaluated on the first part of
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a ciphertext (i.e., inserting the first part of the ciphertext as “tag” into the BF)
which results in a secret key skn after n punctures. An (unpuctured) ciphertext
Cn, as freshly derived from (Cn, kn)← Encaps(pk), yields Decaps(skn, Cn) 6= kn
if no IBE secret key is available anymore or an IBE decryption error occurs. Due to
the bounded false-positive probability of BF and the negligible correctness error
δ(λ) of IBE, this will happen with probability at most (1 − e−

(n+1/2)k
m−1 )k + δ(λ)

which yields Equation (1).
The following BFKEM-properties are mainly used in the security proof to

achieve BFKEM-IND-CCA-secure BFKEMs from BFKEM-IND-CPA-secure
BFKEMs via the FO transform [FO99] along the lines of the BFKEM-IND-
CCA-proof given by Derler et al. [DJSS18, DGJ+18].
Extended correctness of BFKEM. According to Definition 13, we have to
show (a) impossibility of false-negatives, (b) correctness of initial secret key,
and (c) semi-correctness of punctured secret keys. For any number of secret-key
punctures n, (a) holds due to the fact that skn (derived after puncturing on n
ciphertexts) does not contain any IBE secret keys anymore which are capable of
decrypting those ciphertexts due to the perfect completeness property of BF. (b)
holds since sk0 has all (initial) IBE secret keys to decrypt any honestly generated
ciphertext correctly except with negligible probability due to IBE correctness
with negligible decryption error δ(λ). Concerning (c), if decapsulation does not
fail with some (already punctured) secret key on some fixed ciphertext, i.e.,
there exists an IBE secret key to decrypt at least one ciphertext part, then
Decaps outputs a key that is the same as the output of Decaps under sk0 for
that ciphertext except with negligible probability due to IBE correctness with
negligible decryption error δ(λ).
Separable randomness of BFKEM. According to Definition 14, we show that
Encaps(pk) can be written as Encaps(pk; (r, (k0, k1))), for (pk, ·)← KGen(λ,m, k)
and (r, (k0, k1))←$R×K with randomness space R = {0, 1}ρ × · · · × {0, 1}ρ︸ ︷︷ ︸

k times

, for

large-enough integer ρ. We define Encaps(pk; (r, (k0, k1))) as follows (see that the
input (pk; (r, (k0, k1))) uniquely determines the output ((C0, (Cidj )j), (k0, k1)):

Encaps(pk; (r, (k0, k1))):
(mpk, H) := pk with (Hj)j∈[k] := H

(r0, r1, . . . , rk) := r

C0 ← Enc(mpk, 0, k0; r0)
id j := Hj(C0), for all j ∈ [k]

Cidj
← Enc(mpk, id j , k1; rj), for all j ∈ [k]

return ((C0, (Cidj )j), (k0, k1))

Publicly-checkable puncturing of BFKEM. According to Definition 15, we
have to show

Pr [Decaps(sk`, C) = ⊥ 6⇐⇒ CheckPunc(pk,L, C) = ⊥] ≤ ε(λ). (2)
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For ` ∈ N, we construct CheckPunc(pk,L, C), for (pk, ·)← KGen(λ,m, k) and any
list of honestly generated ciphertexts L = (C0, . . . , C`−1) where sk` is punctured
on, but not given as input to CheckPunc:

CheckPunc(pk,L, C):
(mpk, H) := pk with (Hj)j∈[k] := H, (C ′0, . . .) := C

(C0, . . . , C`−1) := L, for Ci = (Ci,0, . . .), for all i ∈ [`]

Ti := BFUpdate(H,Ti−1, Ci,0), for all i ∈ [`]

if BFCheck(H,T`, C ′0) = 1 return ⊥
return 6⊥

See that CheckPunc runs in PPT since BFUpdate and BFCheck are PPT algo-
rithms. Furthermore, Decaps outputs ⊥ if CheckPunc outputs ⊥ while CheckPunc
outputs ⊥ if Decaps outputs ⊥ except with negligible probability which is due
to the negligible correctness error of IBE. Hence, Equation (2) follows.
γ-spreadness of BFKEM. See that the γ-spreadness property of the underlying
IBE scheme directly carries over to the γ-spreadness property of BFKEM. Hence,
if IBE is γ-spread, then BFKEM is γ-spread.
BFKEM-IND-CPA security of BFKEM. We start by showing the BFKEM-
IND-CPA security of BFKEM.

Theorem 9. If IBE is IBE-sIND-CPA-secure, then BFKEM is BFKEM-IND-
CPA-secure. Concretely, for any PPT adversary A there is a PPT distinguisher
D in the IBE-sIND-CPA-security experiment such that

Advbfkem-ind-cpa
BFKEM,A (λ,m, k) ≤ k ·m · Advibe-sind-cpa

IBE,D (λ). (3)

Proof. We show the BFKEM-IND-CPA-security of BFKEM for any valid PPT
adversary A in series of games where:

Game 0. Game 0 is the BFKEM-IND-CPA-security experiment.
Game i. Game i is defined as Game i− 1 except that the challenge-ciphertext

element Cidi in C∗ associated to id i is independent of the (challenge) bit b∗,
for i ∈ [k].

Game k + 1. Game k + 1 is defined as Game k except that the encapsulation
key in the challenge ciphertext is independent of b∗.

We denote the event of the adversary winning Game i as Si. In Game k+1,
A has no advantage (i.e., success probability of Pr[Sk+1] = 1/2) in the sense
of BFKEM-IND-CPA. We argue in hybrids that the Games i ∈ [k + 1] are
computationally indistinguishable from Game 0.
Hybrids between Games 0 and k+1. Each hybrid between Games i−1 and
i, i ∈ [k], is constructed as follows:
– On input m and k, D samples (H,T0) ← BFGen(m, k), for H =: (Hj)j∈[k]

and sets T0 = 0m. Next, D samples (target identity) id∗←$ [m] and sends
id∗ to its IBE-sIND-CPA-challenger. D retrieves mpk in return and sets
pk := (mpk, H).
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– For all id ∈ ([m]∪{0})\{id∗}, D retrieves sk0 := (skid)id from its Ext-oracle.
(Note that D does not have a secret key for id∗.) Looking ahead, with signifi-
cant probability, D will prepare a challenge ciphertext for A that will include
the IBE challenge ciphertext retrieved from the IBE-sIND-CPA-challenger
for id∗. In that sense, A has to query the overall challenge ciphertext to
the Punc′-oracle if A wants to receive a secret key via the Cor-oracle, which
results in “deleting” the secret key for id∗ and not providing it to A. Since D
does not possess the secret key for id∗, it does not need to prepare a query
answer for A that includes a secret key for id∗. Given that, all Cor-queries
can be answered correctly.

– D sends k
(0)
1 , k

(1)
1 ←$M to its IBE-sIND-CPA-challenger and retrieves

C∗id∗ ← Enc(mpk, id∗, k
(b)
1 ), for some (unknown) b←$ {0, 1}.

– D samples b∗←$ {0, 1}, computes C0 ← Enc(mpk, 0, k0), for k0←$M, and
sets (id j)j := (Hj(C0))j∈[k]. If id i 6= id∗, D “aborts” and sends b∗ to its
IBE-sIND-CPA-challenger. (See that D aborts with probability (m−1)/m.)
Otherwise, D prepares:
Part ciphertexts 1, . . . , i− 1: Cidj ← Enc(mpk, id j , k

(1)
1 ), for all

(id j)j∈[i−1].
Part ciphertext i : Cidi

:= C∗id∗ .
Part ciphertexts i+ 1, . . . , k : Cidj

← Enc(mpk, id j , k
(0)
1 ), for all

(id j)j∈[k]\[i].
– D sends (pk, C∗ := (C0, (Cidj

)j), k) to A, for k := (k0, k
(0)
1 ) if b∗ = 0 and

k := (k0, k
(1)
1 ) if b∗ = 1.

– A has access to a Punc′(C)-oracle which runs ski+1 ← Punc(ski, C) for each
invocation i = 0, 1, . . . , q and sets L := L∪{C} for initially empty set L and
number of queries q to Punc. The Cor-oracle returns ski iff C∗ ∈ L, for some
query i ∈ [q].

– Eventually, A outputs a guess b′ which D forwards as b′ ⊕ b∗ to its IBE-
sIND-CPA-challenger.
In the hybrid between Games k and k + 1: proceed as in Game k, but send

(pk, C∗ := (C0, (Cidj )j), (k0, k
′
1)), for uniform k′1←$M to A.

Analysis. In the hybrids between the Games i− 1 and i, for i ∈ [k], we have if
the IBE challenge ciphertext is associated to b = 0, then we are in Game i − 1;
otherwise, if b = 1, then we are in Game i.

In the hybrid between the Games k and k + 1, the change is information-
theoretic, i.e., the challenge ciphertext encapsulates a uniformly random key-
element k(1)1 and the second part of the encapsulation key k′1 is sampled uniformly
at random which yields Pr[Sk+1] = 1/2. (See that any adversary can always
retrieve k0 as it can always decrypt C0 if it queries the Cor-oracle to receive any
secret key after querying C∗ to Punc′.)

Moreover, in each hybrid between the Games i− 1 and i, for i ∈ [k], we have
that Pr[id i = id∗] = 1/m and D is a PPT algorithm. Putting things together,
for k game hops, we conclude that Equation (3) holds. ut
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KGen′(λ,m, k) : return (pk, sk0)← KGen(λ,m, k).
Encaps′(pk) : on input pk, sample k←$K, compute (r, k′) := G(k) ∈ {0, 1}k·ρ+λ
and (C, k)← Encaps(pk; (r, k)), and return (C, k′).

Punc′(ski−1, C): return ski ← Punc(ski−1, C).
Decaps′(ski, C): on input secret key ski and ciphertext C, compute k ←
Decaps(ski, C) and return ⊥ if k = ⊥. Otherwise, compute (r, k′) := G(k) and
return k′ if (C, k) = Encaps(pk; (r, k)), else output ⊥.

Fig. 15. BFKEM-IND-CCA-secure BFKEM′ from BFKEM-IND-CPA-secure BFKEM
and hash function G (modeled as random oracle (RO) in the security proof).

BFKEM-IND-CCA security of BFKEM′. We construct a slight variant of
our BFKEM scheme, dubbed BFKEM′, via the FO transform [FO99] along the
lines of Derler et al. [DJSS18, DGJ+18]. We want to mention that the FO trans-
form does not work generically for any BFKEM-IND-CPA-secure BFKEM and
no generic framework as in the case of KEMs exists. Hence, we consider the
direct product compiler in Section 5.1 and the general proof methodology as
given in [DJSS18, DGJ+18] to achieve BFKEM-IND-CCA security for BFKEM′.
Furthermore, [DJSS18, DGJ+18] requires perfect correctness for unpunctured
keys which our BFKEM definition cannot guarantee. Hence, we have to reprove
the BFKEM-IND-CCA security for BFKEM′, although the proof techniques are
almost the same as presented in [DJSS18, DGJ+18].

We construct a BFKEM-IND-CCA-secure BFKEM as follows. Let BFKEM =
(KGen,Encaps,Punc,Decaps) be a BFKEM-IND-CPA-secure BFKEM scheme
with key space K and non-negligible correctness error δ = δ(λ,m, k, n). Further-
more, let BFKEM have the extended correctness, separable randomness, publicly-
checkable puncturing, and γ-spreadness properties. We construct a BFKEM-
IND-CCA-secure BFKEM scheme BFKEM′ = (KGen′,Encaps′,Punc′,Decaps′)
with key space K′ = {0, 1}λ using a variant of the FO transform in Figure 15
(let G : K → {0, 1}k·ρ+λ, for BFKEM parameter k and large-enough integer ρ,
be a hash function modeled as random oracle (RO) in the security proof).

See that correctness (Definition 12) directly carries over from BFKEM to
BFKEM′, i.e., it is straightforward to verify that if BFKEM is correct then
BFKEM′ is correct. (We only argue to achieve the correctness property together
with BFKEM-IND-CCA-security for BFKEM′ here since the other BFKEM
properties are essentially only needed for the FO transform starting with a
BFKEM-IND-CPA-secure BFKEM having those other properties as well.)

Theorem 10. If a BFKEM BFKEM is BFKEM-IND-CPA-secure with the (ex-
tended) correctness, separable randomness, publicly-checkable puncturing, and γ-
spreadness properties, then BFKEM′ is BFKEM-IND-CCA-secure. Concretely,
for any PPT adversary A making at most qG = qG(λ) queries to the random
oracle G and negligible δ = δ(λ), there is a distinguisher D in the BFKEM-IND-
CPA-security experiment such that

Advbfkem-ind-cca
BFKEM′,A (λ,m, k) ≤ Advbfkem-ind-cpa

BFKEM,D (λ,m, k) + 3 · δ + qG

2γ
.
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Since the proof methodology is almost the same as presented in [DJSS18,
DGJ+18], we refer the reader to Appendix B.4 for the proof. Essentially, we
deviate from [DJSS18, DGJ+18] such that the adapted BFKEM-properties ex-
tended correctness, separable randomness, and publicly-checkable puncturing
have to be carefully integrated into the game hops which — instead of a per-
fectly indistinguishable game hops in [DJSS18, DGJ+18] — we rely on negligibly
indistinguishable game hops by using slightly adapted properties for BFKEM.
On the instantiation of BFKEM′ from lattice- and code-based IBE
schemes. For a BFKEM-IND-CCA-secure BFKEM′, we require the underlying
BFKEM to be BFKEM-IND-CPA-secure and have the properties extended
correctness, separable-randomness, publicly-checkable puncturing, and γ-
spreadness. Since we build CPA-secure BFKEMs from selectively CPA-secure
IBEs, we require by any potential lattice- or code-based IBE to have a
(non-)negligible correctness error (in the sense of HHK [HHK17a]) and the
property of γ-spreadness. (See that the properties separable-randomness and
publicly-checkable puncturing for a BFKEM-IND-CPA-secure BFKEM can be
shown without any requirements on the underlying IBE. Furthermore, extended
correctness holds with respect to a negligible correctness error of the underlying
IBE.) Natural candidates for lattice- and code-based selectively CPA-secure
IBEs are the schemes of Agrawal, Boneh, and Boyen (ABB) [ABB10] or Ducas,
Lyubashevsky, and Prest [DLP14] (i.e., lattice-based IBEs) and the approach
due to Gaborit et al. (GHPT) (i.e, a code-based IBE) [GHPT17] (considering
the changes from [DT18]). We note though that correctness in the sense of
HHK [HHK17a] has not been studied for those IBE schemes and a rigorous
study of correctness for code- and lattice-based IBEs is an interesting direction
for future research. For GHPT in particular, we expect that correctness and
γ-spreadness can be lifted from the underlying PKE, RankPKE, as ciphertexts
of the IBE are RankPKE-ciphertexts whereas a part of the public key is
identity-dependent.

Table 4. Sizes of BFKEM when instantiated with GVP or GHPT.

IBE assumption sk pk C

GVP-80 lattice-based 19.21 GB 1.62 KB 17.46 KB
GVP-192 lattice-based 47.15 GB 3.78 KB 40.28 KB

GHPT-128 code-based 643.73 GB 252 KB 215.79 MB

Boneh-Franklin [DJSS18] pairing-based 717.18 MB 95.5 B 255.5 B

5.3 Comparison of BFKEM Instantiations

To instantiate a BFKEM from post-quantum IBE schemes, we investigate in-
stantiations based on a selectively IND-CPA-secure lattice-based or code-based
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IBEs. As far as lattices are concerned, the first such construction was [GPV08]
after which numerous others followed [ABB10, CHKP10, DLP14, ZCZ16]. To
compute the dimension of a lattice-based BFKEM, we start from the GVP-IBE
instantiation of [DLP14], for which an implementation and concrete dimensions
were given for 80 and 192-bit quantum security. We set the parameter of the
BFKEM as in [DJSS18], i.e., targeting the maximum number of allowed punc-
tures to n = 220, which amounts to adding 212 elements per day to the BF for a
year, and allowing for a false-positive probability of 10−3, we obtainm = 1.5·107
and k = 10. A similar procedure can be applied to the code-based IBE of Ga-
borit et al. (GHPT) [GHPT17] achieving 128-bit quantum security. We note
though that with recent advances in the cryptanalysis, these instances may pro-
vide less security.4 Also, we note that for obtaining a BFKEM-IND-CCA-secure
BFKEM, the respective IBE needs to satisfy correctness in the sense of HKK
(which, as mentioned before, one would have to assume as it has not been studied
before). Table 4 provides an overview including the pairing-based BFKEM from
[DJSS18]. For the latter, we assume the use of the pairing-friendly BLS12-381
curve with 120-bit classical security.
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A Omitted Definitions

A.1 QROM Definitions and Lemmas

We recall various lemmas that we require for the QROM proofs. While in the
ROM, the simulator always learns x and H(x) if the adversary tries to learn any
information on H(x), the situation in the QROM is not as simple. Measuring
or recording queries might collapse the adversary’s quantum state and change
its behavior. The simulator can however learn queries under certain conditions
using the “one-way to hiding” (O2H) technique [Unr15].

In the following we consider two quantum-accessible oracles G,H : X → Y ,
but they do not have to be random oracles. Let’s assume that G and H only
differ in some small set S ⊂ X, i.e. G|X\S = H|X\S . Now consider an algorithm
A that makes at most q queries to G or H. Since queries can be made in parallel,
suppose that the maximum number of sequential invocations of the oracles, the
depth, is at most d ≤ q. Now, for some input z, the O2H technique gives a way
for the simulator to find some x ∈ S if AG(z) behaves differently from AH(z).

The first lemma is the original one-way to hiding lemma which first appeared
in [Unr15]. We use the formulation from [BHH+19], i.e. by conditioning the
probabilities on a classical event Ev.5

Lemma 3 (Thm. 3 [AHU19]). Let G,H : X → Y be random functions, let
z be a random value, and let S ⊂ X be a random set such that G|X\S = H|X\S.
Furthermore, let AH be a quantum oracle algorithm which queries H with depth
at most d. Let Ev be an arbitrary classical event. Define an oracle algorithm
BH(z) as follows: pick i←$ [d] and run AH(z) until just before its i-th round of
queries of H. Measure all query input registers in the computational basis, and
output the set T of measurement outcomes. Define

Pleft = Pr
[
AH(z) : Ev

]
,

Pright = Pr
[
AG(z) : Ev

]
,

Pguess = Pr
[
T ← BH(z) : S ∩ T 6= ∅

]
.

5 Throughout this section (G,H, S, z) may have an arbitrary joint distribution.
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Then

|Pleft − Pright| ≤ 2d
√
Pguess and

∣∣∣√Pleft −√Pright∣∣∣ ≤ 2d
√
Pguess.

The same results holds with BG(z) in the definition of Pguess.

Next up, we move on to the semi-classical O2H. For that we need punctured
oracles [AHU19] which measure whether the input is in a set S.

Definition 18. Let H : X → Y be any function, and let S ⊂ X be a set. The
oracle H \ S takes as input a value x. It first computes whether x ∈ S into an
auxiliary qubit p and measures p. Then it runs H(x) and returns the result. Let
Find be the event that any of the measurements of p returns 1.

We recall the “puncturing is effective” lemma, the “semi-classical one-way to
hiding” lemma, as well as the “search in the semi-classical oracle” lemma.

Lemma 4 (Lemma 1 [AHU19]). Let G,H : X → Y be random functions, let
z be a random value, and let S ⊂ X be a random set such that G|X\S = H|X\S.
Furthermore, let AH be a quantum oracle algorithm. Let Ev be an arbitrary
classical event. Then

Pr
[
AH\S(z) : Ev ∧ ¬Find

]
= Pr

[
AG\S(z) : Ev ∧ ¬Find

]
.

Lemma 5 (Thm. 1 [AHU19]). Let G,H : X → Y be random functions, let
z be a random value, and let S ⊂ X be a random set such that G|X\S = H|X\S.
Furthermore, let AH be a quantum oracle algorithm which queries H with depth
at most d. Let Ev be an arbitrary classical event. Define

Pleft = Pr
[
AH(z) : Ev

]
,

Pright = Pr
[
AG(z) : Ev

]
,

Pfind = Pr
[
AH\S(z) : Find

]
= Pr

[
AG\S(z) : Find

]
.

Then

|Pleft − Pright| ≤ 2
√
dPfind and

∣∣∣√Pleft −√Pright∣∣∣ ≤ 2
√
dPfind.

The theorem also holds with bound
√
(d+ 1)Pfind for the following alternative

definitions of Pright:

Pright = Pr
[
AH\S(z) : Ev

]
,

Pright = Pr
[
AH\S(z) : Ev ∧ ¬Find

]
= Pr

[
AG\S(z) : Ev ∧ ¬Find

]
,

Pright = Pr
[
AH\S(z) : Ev ∨ Find

]
= Pr

[
AG\S(z) : Ev ∨ Find

]
.
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Lemma 6 (Thm. 2, Cor. 1 [AHU19]). Let H : X → Y be a random func-
tion, let z be a random value, and let S ⊂ X be a random set. Let AH be a
quantum oracle algorithm which queries H at most q times with depth at most
d. Let BH(z) and Pguess be defined as in Lemma 3. Then

Pr
[
AH\S(z) : Find

]
≤ 4dPguess.

In particular, if for each x ∈ X, Pr[x ∈ S ] ≤ ε (conditioned on z, on other
oracles A has access to, and on other outputs of H), then

Pr
[
AH\S(z) : Find

]
≤ 4qε.

B Omitted Proofs

B.1 Proof of Theorem 7

Proof. To prove correctness, consider an adversary A playing the Expcor
Π′,A(λ)

game in the random oracle model. We can assume that it makes at most qG
(distinct) queries and that qG is a multiple of the number ` of Π ciphertexts
that form a Π ′ one. Let q′G = qG/`, h ∈ [q′G], i ∈ [`] and let

G(M1, 1), . . . ,G(M1, `), . . . ,G(Mq′G
, 1), . . . ,G(Mq′G

, `),

be the queries to G. We call a query G(Mh, i) problematic iff it exhibits a correct-
ness error in Π (in the sense that Π.Dec(sk, Π.Enc(pk,Mh;G(Mh, i))) 6= Mh)
and a message Mh problematic in Π ′ if G(Mh, i) is problematic for
all i ∈ [`] (in the sense that Π ′.Dec(sk, Π ′.Enc(pk,Mh)) 6= Mh, i.e.,
Π.Dec(sk, Π.Enc(pk,Mh;G(Mh, i))) 6= Mh for all i ∈ [`]). Since G outputs
independently random values, each G(Mh, i) is problematic with probability at
most δ, since we assumed that Π is δ-correct. Hence, by definition of Π ′, each
message Mh is problematic with probability ≤ δ`. Thus, a union bound shows
that the probability that at least one Mh is problematic is at most q′Gδ

` =
qG

`
δ`.

This proves that Π ′ is δ1-correct with δ1(qG) ≤
qG

`
δ`.

Now, we argue the security and therefore let B be an adversary against the
OW-PCA security of Π ′ issuing at most qG queries to G and at most qP queries
to Pco. We proceed with a sequence of games. Let AdvB,j be the advantage of
B in Game j.
Game G0: This is the original OW-PCA game, where we simulate the random
oracle queries G(M, i) as follows: if there exits r s.t. (M, i, r) ∈ QG, then return
G(M, i) := r. Otherwise choose r←$Π.R, set QG := QG∪{(M, i, r)} and return
G(M, i) := r. Consequently, we have

AdvB,0 = Advpke-ow-pca
Π′,B (λ).

Game G1: In game G1 we replace the plaintext checking oracle Pco(M,C) by a
simulation that does not check whether M =M ′ anymore but simply computes
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Ci := Π.Enc(pk,M ;G(M, i)) for all i ∈ [`] and checks if (C1, . . . , C`) = C. We
observe that in game G1 at most qG (distinct queries)

G(M1, 1), . . . ,G(M1, `), . . . ,G(Mq′G
, 1), . . . ,G(Mq′G

, `),

to G happen. Again, we call a query a message Mh problematic iff it exhibits a
correctness error in Π ′ (in the sense that Π ′.Dec(sk, Π ′.Enc(pk,Mh)) 6=Mh, i.e.,
Π.Dec(sk, Π.Enc(pk,Mh;G(Mh, i))) 6= Mh for all i ∈ [`]). Clearly, if B makes a
problematic query, then there exists an adversary C that wins the correctness
experiment Expcor

Π′,C(λ) in the random oracle model. Hence, the probability that

at least one G(Mh, i) is problematic is at most δ1(qG) ≤
qG

`
δ`. However, con-

ditioned on the event that no query is problematic, games G0 and G1 proceed
identical and they only differ if B submits a Pco query (M,C) together with a
query (M, i), i ∈ [`], such that G(M, i) is problematic and C = Π.Enc(pk,Mh).
Consequently, we have

|AdvB,1 − AdvB,0| ≤
qG

`
δ`.

Game G2: In Game G2, we consider event E , which we define to be a query
(M, i) to G for challenge message M and i ∈ [`], or equivalently (M, ·, ·) ∈ QG.
We abort if event E happens and due to the difference lemma we have

|AdvB,2 − AdvB,1| ≤ Pr[E ].

Now, we can construct an adversary against the OW-CPA security of Π in that
by obtaining a challenge ciphertext C for a unknown random M we provide
(pk, C) to the adversary B and we forward the output M ′ of B to the OW-CPA
challenger. Using Lemma 1, relating OW-CPA and IND-CPA, we thus obtain:

AdvB,2 =
1

|M|
+ Advn-pke-ind-cpa

Π,B (λ).

Finally, we bound Pr[E ] and construct an `-IND-CPA adversary against PKE Π
that wins if event E happens in Game G2. Therefore, we choose (M0,M1)←$M2

and send it ` times to the `-IND-CPA challenger obtaining (Cb,1, . . . , Cb,`) forMb

with unknown bit b and forward (pk, (Cb,1, . . . , Cb,`)) to B simulating its view in
Game G2. Now we consider event B being the event that B does query (Mb−1, j)
for some arbitrary j ∈ [`] to G. Since Mb−1 is chosen uniformly random from
M and independent of B’s view, we have Pr[B] ≤ qG

|M| . For the remainder let us
assume that event B did not happen. Note that if E happens, then B queried the
random oracle G on Mb for some i ∈ [`] and thus b = b′. If E does not happen,
then B did neither query Mb on G nor Mb−1, we choose a random bit b′ and
thus Pr[b = b′] = 1/2. Overall, we then have

Advn-pke-ind-cpa
Π,B (λ) +

qG

|M|
≥
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣
=

∣∣∣∣Pr[E ] + 1

2
Pr[¬E ]− 1

2

∣∣∣∣
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=
1

2
Pr[E ].

Taking all together and using Theorem 1 yields the desired bound. ut

B.2 Proof of Theorem 8

Proof. Let A1 be the same as A but after choosing an output M , compute and
discard G(M, i) for all i ∈ [`]. Hence, it makes at most qG + ` queries at depth at
most d+`. Thus, returning the correctM will always count as a Find later in the
proof (c.f. Definition 18). The two algorithms have the same OW-CPA-advantage
of Π ′ = T?[Π,G, `].

As Bindel et al. we show a slightly stronger result by constructing an IND-
KPA adversary B with ` challenge ciphertexts, i.e. the adversary is given a tuple
(pk,M0,M1, C1, . . . , C`) with Ci = Enc(pk,Mb; ri) and needs to determine b.
The algorithm B creates a fresh random oracle G and runs AG\F

1 with F =
{(Mb, i)b∈{0,1},i∈[`]}. Now assume that Find occurs, B measures whether the
query was (M0, i) or (M1, i) for some i and returns the corresponding b. If the
oracle is queried on both (M0, i) or (M1, i

′) or Find does not occur, B guesses b
at random.

Let G′ be the oracle such that G′(Mb, i) = ri and G′(M, i) = G(M, i) for
all other messages. G′ is unknown to B, but we can still analyze A’s behavior
when run with G′ instead of G. By construction, AG′\F

1 cannot returnmb without
causing Find. Hence, by Lemma 5,√

Advpke-ow-cpa
Π′,A (λ) =

√
Pr[mb ← AG′ ]

=

∣∣∣∣√Pr[mb ← AG′ ]

∣∣∣∣−√Pr
[
mb ← A

G′\F
1 ∧ ¬Find

]
︸ ︷︷ ︸

=0

≤
√
(d+ `+ 1)Pr

[
A

G′\F
1 : Find

]
.

By Lemma 4, we obtain

Advpke-ow-cpa
Π′,A (λ) ≤ (d+ `+ 1)Pr

[
A

G′\F
1 : Find

]
= (d+ `+ 1)Pr

[
A

G\F
1 : Find

]
= (d+ `+ 1)Pr[B : Find] .

We now split the event Find as Findb ∨ Find¬b. In both cases Find occurs and
in the first case Mb is measured whereas in the second M¬b is measured. Then
Advn-pke-ind-kpa

Π,B (λ) = |Pr[Findb ]− Pr[Find¬b ]|.
Since B measures M whenever Find occurs, we can view G \ F as

G′′ \ {(M¬b, i)i∈[`]} = (G \ {(Mb, i)i∈[`]}) \ {(M¬b, i)i∈[`]}. Since A has no
information about M¬b except from puncturing, it holds that for any M that

44



Pr
[
AG′′ :M ∈ {M¬b}

]
= 1/|M|. Thus, by Lemma 6, we have

Pr[B : Find¬b ] ≤
4(qG + 1)

|M|
.

Consequently,

Advn-pke-ind-kpa
Π,B (λ) = |Pr[B : Findb ]− Pr[B : Find¬b ]|

≥ Pr[B : Find]− 2Pr[B : Find¬b ] ≥ Pr[B : Find]− 8(qG + 1)

|M|
.

Since Advn-pke-ind-kpa
Π,B (λ) ≤ Advn-pke-ind-cpa

Π,B (λ) ≤ `·Advpke-ind-cpa
Π,B (λ) (by Theorem 1),

we conclude with

Advpke-ow-cpa
T?[Π,G,`],A(λ) ≤ (d+ `+ 1)

(
` · Advpke-ind-cpa

Π,B (λ) +
8(qG + 1)

|M|

)
.

ut

B.3 Proof of Theorem 2

Proof. Let (sk, pk) ← KGen(λ). For M ∈ M, define the set of coins such that
decryption of M will succeed as

YM = {r ∈ R | Dec(sk,Enc(pk,M ; r)) =M}.

Define a new random oracle G′ as G′(M, i) = G(M, i) if G(M, i) ∈ YM ,
G′(M, i)←$R if YM = ∅, and G′(M, i)←$YM otherwise. Thus G′ is uniformly
random in the space of oracles where decryption succeeds if possible and G′ is
independent of the behavior of messages and ciphertexts for T?[Π,G, `] which
do not decrypt correctly. Define the failure probability for a fixed key pair and
G′ as

δ′ = max
M∈M

Pr[Dec(sk,Enc(pk,M)) 6=M ] .

Additionally, define the event DblFail as the case that C is the encryption of
two messagesM1 andM2 such that decryption fails, i.e. Dec(sk, C) 6∈ {M1,M2}.
Define ε′ = Pr[DblFail ]. Both δ′ and ε′ are independent of G′. We denote the
event that A wins the FFC game as Fail and define Ev = Fail ∧ ¬DblFail. By
Lemma 3: ∣∣∣∣√Pr[AG(pk) : Ev ]−

√
Pr[AG′(pk) : Ev ]

∣∣∣∣ ≤ 2d
√
Pguess.

Conditioned on G′, for each m we have that G(m, i) 6= G′(m, i) for all i ∈ [`] with
probability at most (δ′)`. Hence, with qG/d guesses (in expectation), we have that

2d
√
Pguess ≤

√
4d2Pguess ≤

√
4dqG(δ′)`.
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For a ciphertext C define

p1(c) = Pr[∃!M ∈M,∀i ∈ [`] : Ci = Enc(pk,M ;G(m, i)) ∧ Dec(sk, Ci) 6=M ] .

Note that ifM exists but is not unique, then DblFail occurs. Let p1 = maxc p1(c).
Since p1 is independent of G′, we have

Pr
[
AG′(pk) : Ev

]
≤ qL · p1.

From Lemma 3, we obtain p1 ≤ (δ′)` +
√

3(ε′)`. From the Cauchy-Schwarz
corollary we obtain:

Pr
[
AG(pk) : Ev

]
≤
√
4dqG(δ′)` +

√
qL

(
(δ′)` +

√
3(ε′)`

)

≤

√(
(4d+ 1)(δ′)` +

√
3(ε′)`

)
(qG + qL).

Finally, note that δ = E[δ′ : pk,G] and ε ≤ E[(ε′)` : pk,G]. By Jensen’s
inequality it holds that

√
ε ≤ E[

√
(ε′)` : pk,G], and thus

Advpke-ffc
T?[Π,G,`],A(λ) ≤

(
(4d+ 1)δ` +

√
3ε
)
(qG + qL) + ε.

ut

B.4 Proof of Theorem 10

Theorem 11. If a BFKEM BFKEM is BFKEM-IND-CPA-secure with the (ex-
tended) correctness, separable randomness, publicly-checkable puncturing, and γ-
spreadness properties, then BFKEM′ is BFKEM-IND-CCA-secure. Concretely,
for any PPT adversary A making at most qG = qG(λ) queries to the random
oracle G and negligible δ = δ(λ), there is a distinguisher D in the BFKEM-IND-
CPA-security experiment such that

Advbfkem-ind-cca
BFKEM′,A (λ,m, k) ≤ Advbfkem-ind-cpa

BFKEM,D (λ,m, k) + 3 · δ + qG

2γ
. (4)

Proof. We prove the Theorem via a sequence of games where changes of the
specific games are shown to have at most only negligible advantage compared
to the success probability in the BFKEM-IND-CCA security experiment. Let
AdvA,j be the advantage of A in Game j. Let Decaps′ be the decryption oracle
which we successively change (cf. Figure 16 for the definition and all changes
made throughout the sequence of games). The game steps are as follows:
Game G0 (BFKEM-IND-CCA-security): Game 0 is the BFKEM-IND-CCA se-
curity experiment. Hence, we have that

AdvA,0 = Advbfkem-ind-cca
BFKEM′,A (λ,m, k).
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Decapsulation-Oracle: Decaps′(ski, C)

0 : if CheckPunc(pk,L, C) = ⊥ return ⊥ // G3 - G7

1 : k← Decaps(ski, C) // G0 - G3

2 : k← Decaps(sk0, C) // G4 - G6

3 : if k = ⊥ return ⊥ // G0

4 : if (k,G(k)) /∈ L return ⊥ // G1 - G4

5 : (r, k′) := G(k) // G0 - G1

6 : read (unique) (k, (r, k′)) from L // G2 - G4

7 : if (C, k) 6= Encaps(pk; (r, k)) return ⊥ // G0 - G4

8 : return k // G0 - G4

9 : if (k, (r, k′)) /∈ L and (C, k) = Encaps(pk; (r, k)) return ⊥ // G5

10 : return k′ such that (k, (r, k′)) ∈ L and (C, k) = Encaps(pk, (r, k)) // G5

11 : if (k̂, (r̂, k̂
′
)) /∈ L and (C, k̂) = Encaps(pk; (r̂, k̂)) return ⊥ // G6 - G7

12 : return k̂
′ such that (k̂, (r̂, k̂

′
)) ∈ L and (C, k̂) = Encaps(pk, (r̂, k̂)) // G6 - G7

Fig. 16. The changes in the decapsulation oracle throughout the sequence of games.

Game G1 (γ-spreadness of C): Game 1 is defined as Game 0 except that we
substitute line 3 with line 4. More concretely, instead of checking k = ⊥,
the decapsulation oracle checks if the adversary has queried G on (k) and
maintains a list L with all adversarial queries to G as (k,G(k)), . . . ). The
change is perfectly indistinguishable except for the case when the adversary
inputs a ciphertext C ′ such that Decaps′(ski, C

′) behaves differently in Game
0 (i.e., Decaps(ski, C ′) 6= ⊥) and Game 1 (i.e., Decaps(ski, C ′) = ⊥). By the
properties of BFKEM′, we have that (C, k) = Encaps(pk; (r, k)) is determined
by (r, k′) = G(k) for uniform r ∈ R and some k ∈ K. Hence, the different
behavior can only happen if G was not queried before. But the probability that
the adversary finds such C ′ with C ′ = C without querying G(k) is bounded
by the γ-spreadness of BFKEM. Since the adversary queries the oracle at most
qG = qG(λ) times, we conclude AdvA,0 ≤ AdvA,1 + qG · 2−γ .
Game G2 (conceptional change): Game 2 is defined as Game 1 except that
we substitute line 5 with line 6. More concretely, we read the unique tuple
(k, (r, k′)) from the list L which guarantees that (k, (r, k′)) = (k,G(k′)) holds.
Indeed, G(k) uniquely determines (k, (r, k′)). We conclude AdvA,1 = AdvA,2.
Game G3 (publicly-checkable puncturing of BFKEM): Game 3 is defined
as Game 2 except that we introduce line 0. More concretely, we now
first check if CheckPunc(pk,L′, C) = ⊥, for some list of ciphertexts L′.
By the publicly-checkable puncturing property of BFKEM, we have that
Pr[Decaps(sk`, C) = ⊥ 6⇐⇒ CheckPunc(pk,L′, C) = ⊥] ≤ δ, for negligible error
term δ = δ(λ) and L′ = (C0, . . . , C`−1) is the list of ciphertexts that were sent
to Punc′. It follows that AdvA,2 ≤ AdvA,3 + δ.
Game G4 (extended-correctness of BFKEM): Game 4 is defined as Game 3
except that we substitute line 1 with line 2. More concretely, we now use the
non-punctured (initial) secret key sk0 to perform decryption of C (note that ski
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can be an already punctured secret key). By the extended-correctness property
of BFKEM, we have Pr[Decaps(ski, C) 6= Decaps(sk0, C)] ≤ δ, for negligible
error term δ = δ(λ). Besides that, the oracle behaves the same as in Game 3.
Hence, we conclude that AdvA,3 ≤ AdvA,4 + δ.
Game G5 (conceptional change): Game 5 is defined as Game 4 except that we
simplify the checks in lines 4, 6, 7 and 8. More concretely, we simply replaced
the checks in Game 4 with equivalent checks in Game 5 now in lines 9-10.
Hence, we deduce AdvA,4 = AdvA,5.
Game G6 (correctness for non-punctured secret keys of BFKEM): Game 6 is

defined as Game 5 except that we check if there exist (k̂, (r̂, k̂
′
)) ∈ L such

that (C, k̂
′
) = Encaps(pk; (r̂, k̂)) without comparing it to k̂ ← Decaps(sk0, C),

that is we substitute lines 9-10 with lines 11-12. By the correctness for non-
punctured secret keys of BFKEM, we have that if (C, k̂) = Encaps(pk; (r̂, k̂))

then Decaps(sk0, C) = k̂ except with negligible probability δ = δ(λ). Hence, we
infer that AdvA,5 ≤ AdvA,6 + δ.
Game G7 (conceptional change): Game 7 is defined as Game 6 except that we
remove line 2 in Game 6. In Game 6, k′ computed via k ← Decaps(sk0, C) was
never used within the consistency checks anymore. Hence, we can safely remove
this computation. We conclude AdvA,6 = AdvA,7.
We are now ready to continue with the reduction to the BFKEM-IND-CPA-
security of BFKEM. (In particular, note that in Game 7, sk0 is not used
anymore within the Decaps-oracle.) Let A be a PPT adversary on the BFKEM-
IND-CCA-security of BFKEM′, we will construct a PPT adversary D on the
BFKEM-IND-CPA-security of BFKEM. D receives (C∗, k∗b), for some (unknown)
b←$ {0, 1}, that is forwarded to A. During the experiment, oracle-calls by A
to Punc′ and Cor are re-directed to the BFKEM-IND-CPA-challenger. The
decapsulation oracle Decaps′ is as defined in Game 7. Eventually, A outputs a
guess b′ which D forwards to its challenger.
Analysis. We conclude that the success probability of A in the BFKEM-IND-
CCA-security experiment is

Advbfkem-ind-cca
BFKEM′,A (λ,m, k) ≤ Advbfkem-ind-cpa

BFKEM,D (λ,m, k) + 3 · δ + qG

2γ
. ut

C Evaluation

In this section, we present the evaluation of our compiler applied to all the
NIST candidates with non-negligible correctness error. Throughout this section,
O[Π, `] denotes either T? or Cp,d and the generic framework applied to Π with
` parallel ciphertexts. In the columns with the runtime, we present both the
expected runtime of a parallelized implementation as well as a serial imple-
mentation of the Encaps and Decaps algorithms, i.e. p/s where p denotes the
runtime of the parallel implementation and s denotes the runtime of the serial
implementation. For the runtime of the Decaps algorithm, we assume that none
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of the underlying schemes returns ⊥ on failure, i.e. we consider the worst case.
We want to note that the target correctness error is not consistent, but all of
them target ≤ 2−128 for all levels. Hence, we will target the same error. In case
δ`−1 is only slightly larger than 2−128, we also include it in the tables to give a
more complete picture.

C.1 Code-based KEMs

Let’s start with ROLLO. The designers specify two IND-CPA secure variants,
namely ROLLO-I and ROLLO-III, with decoders having DFRs between 2−30

and 2−42. Additionally, ROLLO-II is specified as IND-CCA secure variant with a
negligible DFR of 2−128.6 While our transform does not render ROLLO-III more
efficient than ROLLO-II, for ROLLO-I the picture is quiet different: while the
ciphertexts of ROLLO-I combined with our transform are slightly larger than
those of ROLLO-II, public key and ciphertext size combined is always smaller
even if we overshoot the goal for the correctness error. Runtime-wise, a parallel
implementation is faster, of course. For the L1 and L5 instances of ROLLO-I, the
table also includes instances where our transform produces a correctness error
that is only slightly larger than 2−128. If the analysis of the decoder is improved
only by a small amount, those instances would become the desired ones without
overshooting the correctness error by too much. The full comparison is depicted
in Table 5.7

Next, we discuss BIKE. All parameter sets targeting an IND-CPA security are
specified with a bit flipping decoder obtaining a DFR of < 10−7 ≈ 2−23.25. More
in depth analysis of the decoder of BIKE estimates the actual DFR between
2−49 and 2−57 [SV19]. Hence we will base our comparison on a DFR of 2−49
and thus on the same δ-correctness since DFR coincides with δ-correctness for
BIKE [DGKP20]. Sendrier and Vasseur also expect that by increasing the size
of the underlying field by up to 15 %, the decoder would achieve a negligible
DFR. For the IND-CCA secure version of BIKE, the backflip decoder [SV20] is
used which achieves a negligible DFR. This decoder comes with the drawback,
however, that at the time of the round 2 submission no constant-time implemen-
tation was available. A less efficient but constant-time version of the decoder was
proposed recently [DGK20], though. For BIKE, our transform only improves the
runtime in case the parallel implementation is used, though. As expected, the
public key is smaller compared to the IND-CCA versions, yet the increase in the
ciphertext outweighs the saving in the public key size. Overall, our transform
applied to BIKE leads to a trade-off between runtime efficiency and size. The
in-depth comparison is depicted in Tables 6 to 8.

Finally, we consider LEDAcrypt which directly starts from a deterministic
PKE. Hence, we have to apply the direct product compiler with independent
6 In this section, we will base δ estimations on the DFR if not specified otherwise.
7 Note that with the new parameters proposed in https://groups.google.com/a/
list.nist.gov/forum/#!topic/pqc-forum/p7o1N2-sXFw, we can observe similar
trade-offs.
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keys, but use our modified version C?p,d. Its parameter sets are specified with a
non-negligible DFR of 2−64 for the IND-CPA case and with negligible DFR for
the IND-CCA case. With a DFR of 2−64, the compiler ends up doubling the key
and ciphertext sizes and end up with larger sum by 17% (for L5) to 38% (for L1).
But in any case, the runtime figures for Encaps and Decaps significantly improve
using a parallel implementation, resulting in a trade-off between bandwidth and
runtime costs. See Table 9 for the full comparison.
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Table 5. Sizes (in bytes) and runtimes (in ms) of ROLLO. Runtimes are taken from the optimized implementations.

KEM CCA δ sk pk C
∑

KGen Encaps Decaps

ROLLO-I-L1 7 2−30 40 465 465 930 0.10 0.02 0.18
O[ROLLO-I-L1,4] 3 2−120 40 465 1860 2325 0.10 0.02/0.08 0.24/0.96
O[ROLLO-I-L1,5] 3 2−150 40 465 2325 2790 0.10 0.02/0.10 0.26/1.30
ROLLO-II-L1 3 2−128 40 1546 1674 3220 0.69 0.08 0.53
ROLLO-III-L1 7 2−30 40 634 1180 1814 0.03 0.04 0.14
O[ROLLO-III-L1,4] 3 2−120 40 634 4720 5354 0.03 0.04/0.16 0.26/1.04
O[ROLLO-III-L1,5] 3 2−150 40 634 5900 6534 0.03 0.04/0.20 0.30/1.50

ROLLO-I-L3 7 2−32 40 590 590 1180 0.13 0.02 0.36
O[ROLLO-I-L3,4] 3 2−128 40 590 2360 2950 0.13 0.02/0.08 0.42/1.68
ROLLO-II-L3 3 2−128 40 2020 2148 4168 0.83 0.09 0.69
ROLLO-III-L3 7 2−36 40 830 1580 2410 0.04 0.05 0.38
O[ROLLO-III-L3,4] 3 2−144 40 830 6320 7150 0.04 0.05/0.20 0.53/2.12

ROLLO-I-L5 7 2−42 40 947 1894 2841 0.20 0.03 0.69
O[ROLLO-I-L5,3] 3 2−126 40 947 5682 6629 0.20 0.03/0.09 0.75/2.25
O[ROLLO-I-L5,4] 3 2−168 40 947 7576 8523 0.20 0.03/0.12 0.78/3.12
ROLLO-II-L5 3 2−128 40 2493 2621 5114 0.79 0.10 0.84
ROLLO-III-L5 7 2−42 40 1138 2196 3334 0.05 0.07 0.63
O[ROLLO-III-L5,3] 3 2−126 40 1138 6588 7726 0.05 0.07/0.21 0.77/2.31
O[ROLLO-III-L5,4] 3 2−168 40 1138 8784 9922 0.05 0.07/0.28 0.84/3.36
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Table 6. Sizes and runtimes (millions of cycles) of BIKE L1. Runtimes are taken from the reference implementations.

KEM CCA δ sk pk C
∑

KGen Encaps Decaps

BIKE-1-L1 7 2−49 1988 20326 20326 40652 0.21 0.24 3.13
O[BIKE-1-L1,3] 3 2−147 1988 20326 60978 81304 0.21 0.24/0.72 3.61/10.83
BIKE-1-CCA-L1 3 2−128 25546 23558 23558 47116 0.36 0.34 4.15
BIKE-2-L1 7 2−49 1988 10163 10163 20326 4.79 0.14 3.01
O[BIKE-2-L1,3] 3 2−147 1988 10163 30489 40652 4.79 0.14/0.42 3.29/9.88
BIKE-2-CCA-L1 3 2−128 25546 11779 12035 23814 6.32 0.20 4.12
BIKE-3-L1 7 2−49 1876 22054 22054 44108 0.17 0.24 3.95
O[BIKE-3-L1,3] 3 2−147 1876 22054 66162 88216 0.17 0.24/0.71 4.42/13.27
BIKE-3-CCA-L1 3 2−128 26414 24538 24794 49332 0.23 0.29 5.65
BIKE-BO3-L1 7 2−49 1876 11283 22054 33337 0.17 0.31 3.95
O[BIKE-BO3-L1,3] 3 2−147 1876 11283 66162 77445 0.17 0.31/0.92 4.56/13.68
BIKE-BO3-CCA-L1 3 2−128 26414 12525 24794 37319 0.28 0.35 5.65
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Table 7. Sizes and runtimes (millions of cycles) of BIKE L3. Runtimes are taken from the reference implementations.

KEM CCA δ sk pk C
∑

KGen Encaps Decaps

BIKE-1-L3 7 2−49 3090 39706 39706 79412 0.40 0.44 8.33
O[BIKE-1-L3,3] 3 2−147 3090 39706 119118 158824 0.40 0.44/1.32 9.21/27.63
BIKE-1-CCA-L3 3 2−128 52732 49642 49642 99284 0.77 0.71 8.86
BIKE-2-L3 7 2−49 3090 19853 19853 39706 7.30 0.25 8.28
O[BIKE-2-L3,3] 3 2−147 3090 19853 59559 79412 7.30 0.25/0.75 8.79/26.36
BIKE-2-CCA-L3 3 2−128 52732 24821 25077 49898 9.89 0.39 8.57
BIKE-3-L3 7 2−49 2970 43366 43366 86732 0.34 0.46 9.01
O[BIKE-3-L3,3] 3 2−147 2970 43366 130098 173464 0.34 0.46/1.38 9.94/29.81
BIKE-3-CCA-L3 3 2−128 57056 54086 54342 108428 0.60 0.62 9.59
BIKE-BO3-L3 7 2−49 2970 21939 43366 65305 0.34 0.59 9.01
O[BIKE-BO3-L3,3] 3 2−147 2970 21939 130098 152037 0.34 0.59/1.76 10.18/30.55
BIKE-BO3-CCA-L3 3 2−128 57056 27299 54342 81641 0.61 0.75 9.59
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Table 8. Sizes and runtimes (millions of cycles) of BIKE L5. Runtimes are taken from the reference implementations.

KEM CCA δ sk pk C
∑

KGen Encaps Decaps

BIKE-1-L5 7 2−49 4111 65498 65498 130996 0.72 0.79 20.05
O[BIKE-1-L5,3] 3 2−147 4111 65498 196494 261992 0.72 0.79/2.38 21.63/64.90
BIKE-1-CCA-L5 3 2−128 85578 81194 81194 162388 1.15 1.02 17.96
BIKE-2-L5 7 2−49 4110 32749 32749 65498 14.05 0.42 19.81
O[BIKE-2-L5,3] 3 2−147 4110 32749 98247 130996 14.05 0.42/1.25 20.64/61.91
BIKE-2-CCA-L5 3 2−128 85578 40597 40853 81450 16.95 0.57 17.63
BIKE-3-L5 7 2−49 4256 72262 72262 144524 0.55 0.75 21.00
O[BIKE-3-L5,3] 3 2−147 4256 72262 216786 289048 0.55 0.75/2.26 22.50/67.51
BIKE-3-CCA-L5 3 2−128 93990 89734 89990 179724 1.03 1.15 20.21
BIKE-BO3-L5 7 2−49 4256 36387 72262 108649 0.55 0.97 21.00
O[BIKE-BO3-L5,3] 3 2−147 4256 36387 216786 253173 0.55 0.97/2.92 22.94/68.82
BIKE-BO3-CCA-L5 3 2−128 93990 45123 89990 135113 1.07 1.41 20.21

Table 9. Sizes (in bytes) and runtimes (in ms) of LEDAcrypt. The instances with postfix NN refer to those with non-negligible DFR.
Runtimes are taken from the reference implementations.

KEM CCA δ sk pk C
∑

KGen Encaps Decaps

LEDAcrypt-L1-NN 7 2−64 25 4488 4488 8976 0.29 0.13 0.42
O[LEDAcrypt-L1-NN,2] 3 2−128 50 8976 8976 17952 0.59 0.13/0.26 0.55/1.10
LEDAcrypt-L1 3 2−128 25 6520 6520 13040 0.55 0.16 0.55

LEDAcrypt-L3-NN 7 2−64 33 7240 7420 14660 0.91 0.26 0.91
O[LEDAcrypt-L3-NN,2] 3 2−128 66 14480 14840 29320 1.81 0.26/0.52 1.17/2.34
LEDAcrypt-L3 3 2−128 33 12032 12032 24064 1.53 0.54 1.25

LEDAcrypt-L5-NN 7 2−64 41 11136 11136 22272 2.52 0.14 1.41
O[LEDAcrypt-L5-NN,2] 3 2−128 82 22272 22272 44544 5.04 0.14/0.29 1.55/3.11
LEDAcrypt-L5 3 2−128 41 19040 19040 38080 4.25 0.84 2.28
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C.2 Lattice-Based KEMs

The designers of ThreeBears [Ham19] specify both a IND-CPA secure version
and an IND-CCA secure one for each security level they target: the parameters
sets of the former achieve around 2−62 decryption error whereas those of the
latter guarantee a decryption error < 2−140. Such improvement is obtained by
reducing the variance of the error distribution, while leaving all other parameters
fixed, and therefore by incurring in a security loss. Our complier will thus double
the ciphertext size in order to achieve negligible decryption error but keep the
security level constant.

Next, we consider Round5 [GZB+19]. Its designers specify three different
versions both for a CPA-secure KEM and for a CCA-secure PKE. Moreover
each of them has three variants: two based on structured lattices (one using
error-correcting codes and the other one not) and one based on unstructured
ones. The transform, as expected, provides a smaller public keys this time too
but the doubling ciphertext, as in the FrodoKEM case, outweighs this advantage:
public key and ciphertext size combined is always at least thirty percent bigger
when our transform is applied. The results are shown in Table 10.

Finally, we also consider FrodoKEM [NAB+19]. While the NIST submis-
sion was specified with negligible correctness error, an earlier version of the
scheme [BCD+16] was specified with non-negligible error. For the submission,
the designers set parameters which achieve negligible decryption error (which
in their case corresponds to decryption error less than 2−128, 2−192 and 2−256

for target 1, 3 and 5 security level respectively). On the contrary, the earlier
version of this scheme [BCD+16], that we denote by FrodoCCS, achieves only
non-negligible failure probability. It is therefore possible to apply our transform
to this primitive and compare its performance, in terms of ciphertext/public-key
size and runtime, to its later versions. In this case, the only advantage of our
transform is the public key size, which remains slightly smaller compared to the
CCA versions. This comes the cost of a blow-up in the ciphertext size which
exceeds significantly the aforementioned gain. The full comparison is depicted
in Table 11.
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Table 10. Sizes (in bytes) and runtimes (millions of cycles) of Round5. Runtimes of the PKEs are taken from the reference implemen-
tations and KEMs’ ones are approximated starting from those of the CCA PKE used to construct them. A parameter set is denoted
as R5N{1,D}-{1,3,5}-{KEM,PKE}{0,5}, where {1,D} refers whether it is a non-ring (1) or ring (D) parameter set, {1,3,5} refers to the
NIST security level, and {0,5} identifies the number of correctable bits.

KEM CCA δ sk pk C
∑

KGen Encaps Decaps

R5ND-1-PKE0d-cpa 7 2−65 128 634 682 1316 0.06 0.09 0.04
O[R5ND-1-PKE0d-cpa,2] 3 2−130 128 634 1364 1998 0.06 0.09/0.19 0.14/0.28
R5ND-1-KEM0d-cca 3 2−155 256 676 756 1432 0.07 0.10 0.14

R5ND-3-PKE0d-cpa 7 2−71 192 909 981 1890 0.14 0.21 0.11
O[R5ND-3-PKE0d-cpa,2] 3 2−142 192 909 1962 2871 0.14 0.21/0.42 0.33/0.65
R5ND-3-KEM0d-cca 3 2−147 384 983 1119 2102 0.09 0.14 0.19

R5ND-5-PKE0d-cpa 7 2−64 256 1178 1274 2452 0.16 0.25 0.13
O[R5ND-5-PKE0d-cpa,2] 3 2−128 256 1178 2548 3726 0.16 0.25/0.50 0.38/0.76
R5ND-5-KEM0d-cca 3 2−143 512 1349 1525 2874 0.10 0.17 0.24

R5N1-1-PKE0d-cpa 7 2−66 128 5214 5236 10450 2.77 4.05 0.19
O[R5N1-1-PKE0d-cpa,2] 3 2−132 128 5214 10472 15686 2.77 4.05/8.10 4.24/8.48
R5N1-1-KEM0d-cca 3 2−146 256 5740 5804 11544 3.52 5.31 5.42

R5N1-3-PKE0d-cpa 7 2−65 192 8834 8866 17700 6.69 10.10 0.28
O[R5N1-3-PKE0d-cpa,2] 3 2−130 192 8834 17732 26566 6.69 10.10/20.20 10.38/20.75
R5N1-3-KEM0d-cca 3 2−144 384 9660 9732 19392 6.78 10.20 10.60

R5N1-5-PKE0d-cpa 7 2−77 256 14264 14288 28552 14.00 18.60 0.81
O[R5N1-5-PKE0d-cpa,2] 3 2−154 256 14264 28576 42840 14.00 18.60/37.20 19.41/38.83
R5N1-5-KEM0d-cca 3 2−144 512 14636 14724 29360 12.70 19.20 19.60
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Table 11. Sizes (in bytes) and runtimes (millions of cycles) of FrodoKEM and FrodoCCS. Runtimes are taken from the reference
implementations.

KEM CCA δ sk pk C
∑

KGen Encaps Decaps

FrodoKEM-640-AES 3 2−138.7 10272 9616 9720 19336 1.38 1.86 1.75
FrodoKEM-976-AES 3 2−199.6 15664 15632 15744 31376 2.82 3.56 3.40
FrodoKEM-1344-AES 3 2−255.5 21568 21520 21632 43152 4.76 5.98 5.75
FrodoCCS-Classical† 7 2−36.2 7120 7104 7112 14216 0.00 0.00 0.00
O[FrodoCCS-Classical,4] 3 2−144.8 7120 7104 28448 35552 0.00 0.00/0.00 0.00/0.00
FrodoCCS-Recommended 7 2−38.9 11296 11280 11288 22568 2.94 3.48 0.34
O[FrodoCCS-Recommended,4] 3 2−155.6 11296 11280 45152 56432 2.94 3.48/13.94 10.79/43.16
FrodoCCS-Paranoid 7 2−33.8 12976 12960 12968 25928 3.25 4.26 0.39
O[FrodoCCS-Paranoid,4] 3 2−135.2 12976 12960 51872 64832 3.25 4.26/17.06 13.18/52.73
† No runtime numbers are available for this parameter set.
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